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Abstract—In this research, total acceleration equation is
formulated where there is time scale coefficient at its time
differential term. The formulation was done based on
Courant Number equation and by using Taylor series.
Then this total acceleration is applied to kinematic free
surface boundary condition and Euler momentum
equations. Potential velocity and water surface equations
of linear water wave theory as well as wave number
conservation equation were substituted to momentum and
kinematic free surface boundary condition equations
produced dispersion equation with wave amplitude as its
variable and which fits with wave number conservation
equation. Wave number conservation equation is an
equation that regulates changes in wavelength as a result
of water depth changes. This equation was extracted from
potential velocity equation.

Keywords—Courant Number, Taylor Series, Total
Derivative, Wave Number Conservation Equation.

. INTRODUCTION

This research aims at finding a dispersion equation with a
wavelength that fits with what exists in the nature.
Dispersion equation of linear wave theory (Dean, 1991),
was formulated using kinematic free surface boundary
condition and Bernoulli equations where this Bernoulli
equation is formulated from Euler momentum equation.
Both at the kinematic free surface boundary condition and
Euler momentum equations there are total change term of
spatial and time function.

In the formulation of total acceleration equation, it is

defined that at limdx and dt close to zero, u = %, where

u is a velocity of material movement. Courant number in
fluid mechanics (1928) stated that in order to be defined

that u = Z—t, there are certain criteria for the size of space

length (dx) and time step (dt). In general, it can be stated
that in order to be defined that at limdx and dt close to

d . ..
Zero, u = d—i, there are certain conditions.

The accuracy of Taylor series is determined not only by
the number of its terms but also by its interval size.
Meanwhile, Taylor series is often used only up to the first
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derivative where in this case, truncation error can only be
reduced by reducing the size of its interval. Based on
Courant criteria it is assumed that Taylor series for a
spatial and time function must contain a coefficient at the
time interval. Then minimizing truncation error at Taylor
series obtains time coefficient value and interval size that
produces the level of accuracy that fits with what has been
demanded.

1. THE FORMULATION OF TOTAL
ACCELERATION EQUATION WITH
COEFFICIENT
In this section total acceleration equation will be
formulated where there is a coefficient at the time

differential term.

2.1. Base of the Theory
a. Courant Number
Courant (1928) introduced Courant Number which is a
criteria relation between length interval (8x)with time
step (8t)to conduct numerical analysis at the fluid flow,
i.e.

ust

C=""<Crax - 1)

where uis a velocity, &tis time step and dxis length
interval,C,,,, = 1. Ifat () u = i—:is defined, hence € =1
which does not meet the Courant Number criteria.
However, if u = %is defined where y is a positive
number greater than 1, then it will meet (1). From this
equation, a conclusion can be made that there is a

coefficient y at time step &t to define a velocity. This
coefficient can be stated as a time scale coefficient.

b. Taylor Series Review

Taylor series is often used only up to the first derivative
or with an accuracy of 0(&%)at numerical analysis as
well as the formulation of a conservation law. Total
acceleration equation, at Euler momentum equation at
fluid flow, is also often formulated using Taylor series
0(8') Using Taylor series up to the first derivative, the

accuracy is depended only on the interval measurement.
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Therefore, interval size that produces a good accuracy
should be determined.

For a continuous function f = f(x,t), where xis
horizontal axis and tis time, Taylor series approach
0(81) (Thomas (1996)),

O+ 8x,t + 60 = f(e,0) + 6x -+ 6t -

Using time scale coefficient vy,

fx + 68x,t +y8t) = flx,t) + 6x%+y6t%

At (2) there is a truncation error,

SZHZ 25232 aZ
R=S21 rOT] s yst IL
2 dx? 2 at? dxdt

Rcan be ignored if

R

a7 a7
ox ax+y8tat

<€ . ®))

where €is a very small number. (3) can be achieved by a
small size of dxandétand with a time scale value of vy.
The size oféxanddtand the value of y where Taylor series
can be used only up to the first derivative can be
determined with (3).

2.2. Determining &8x,6t and y.

With an assumption that there are the values of
6x,6tandy, where the number of the third derivative term
with higher derivatives is much smaller than the number
of the second derivative term, then as R, only the second
derivative that can be used, and (3) becomes

242 254292 2
dxcd [+z Sted t+y8xé‘ta f
2 dx2 2 dt2 dxdt
s El_f+ 6tﬂ <€ .. (4)
Fax VOl

Wave length is L = CTwhereC is wave celereties or wave
velocity and T is wave period. From this wave length

equation, &x = Cét is defined. With L =27"Where kis
wave number, relation C = %is obtained, then,

ox=2% ©)

Substitute (5) to (4) and the upper and lower part of the
equation are divided by 8t

|%(%)2&3872§+,,Y (5&)5%+% <¢..6)

| e
Furthermore a sinusoidal function is reviewed with the
formf (x,t) = coskxcosat. This equation is a water
wave surface elevation equation of the linear wave theory
(Dean, 1991). Substitute f(x,t) = coskxcosatto (6) and
perform it at the condition coskx = sinkx = cosot =
sinat, will produce

v

<
) <e ..(70
At (7), the lower part of equation can be taken out from
the absolute operation| |, since it always has positive

value. At (7) there are two unknowns, ie. yandét.
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Another equation is needed, therefore Taylor series is
performed with a change in ttime only,

df = 5t% a2
fOot+ 80 = fa,0) + 6t L+ (g)
In this case the time scale coefficient y was not performed
since the one to be reviewed is only the change in
function against time t. In order for (8) to be able to be

performed only up to the first derivative, then
st2d2f

Substitutef (x, t) = coskxcosatto (9) and the equation is
performed at coskx = sinkx = cosat = sinat, hence
Stmax < = ..(10)

Stat (10) is the value of 8t,,,, since it is determined only
based on the function of time without the interaction with
the changes toward space. Withét = dt,,,,, the value of y
can be calculated at (7).

Table.1: The Value of yand§t,,,, for f(x,t) =

coskxcosat.
| 14 | Otmax
Wave period T: 7 sec.
R? 3 0,02228
R3 3,14301 0,02243
R* 3,15978 0,02214
Wave period T: 8 sec.
R? 3 0,02547
R3 3,14301 0,02564
R* 3,15978 0,0253
Wave period T: 9 sec.
R? 3 0,02865
R3 3,14301 0,02884
R* 3,15978 0,02846
Wave period T: 10 sec.
R? 3 0,03183
R3 3,14301 0,03205
R* 3,15978 0,03162

Table (1) presents the result of the calculation of values
yanddt,,,, for various wave periods and various level of
accuracy R, whereR?shows that Ris calculated only with
the second derivative only, R3shows thatRis calculated up
to the third derivative and R* , Ris calculated up to the
fourth derivative. It can be seen that for the same period,
the higher the accuracy of Rthe bigger the value of y but
with small change. Whereas at the similar accuracy level
of R, for different wave period, the value of y is the same.
The uses of accuracy up to R5does not change the value
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. 5x°  8t° .
of yconsidering the terms of jandaatRsls avery small
number close to zero.

The function f(x,t) = coskxcosothas been used to
calculate the value v. If the form of function f(x,t) =
sinkx sinot is used, where this equation is the change of
water particle velocity at space and time for standing
wave, then relation equation between yanddtis obtained
which is similar to (7) for accuracy R?, i.e.

-1 y—y—z odt
% <E (11)
However, accuraciesR3andR*have different shapes and
produce different value y, although with a not too big
different, as shown on Table (2).

Table.2: The Value ofyandét,,,, forf (x, t) = sinkxsinat

14
Stmax
(sec.)

Wave period T = 7 sec.
R? 3 0,02228
R3 2,85619 0,02243
R* 2,87499 0,02214

Wave period T = 8 sec
R? 3 0,02547
R3 2,85619 0,02564
R* 2,87499 0,0253

Wave period T = 9 sec
R? 3 0,02865
R3 2,85619 0,02884
R* 2,87499 0,02846

Wave period T = 9 sec
R? 3 0,03183
R3 2,85619 0,03205
R* 2,87499 0,03162

Table (2) shows that at f(x,t) = sinkxsinot the value of
v is fluctuating against the level of accuracy Rbut with
relatively small fluctuation. From the two analysis of
coefficient y for the two shapes of the function, the
hydrodynamic analysis for water wave can use the value
of y = 3. For numerical analysis where discretization of
space and time is needed, than the space length size 6x =

%With time stepst = %.

2.3. Total Acceleration with coefficient

As has been shown that by performing coefficient on time
differential term, Taylor series can be performed up to the
first derivative, i.e.
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O+ 6x,t+6t) =fx,t) +y5t¥+5x%

The first term of the right side of the equation is moved to
the left and the equation is divided by &t

O+ 6x,t+6t) — flx,t) df oxdf

St ~Var " stax

With the presence of time coefficient yat time differential

term, it can be defined that at lim&x, Stapproaches zero

can be defined thati—fzu. Therefore, the total

acceleration equation is

o _ & ¥

T Vg TG e (12)

. EQUATIONS FROM VELOCITY

POTENTIAL

This part has been written by Hutahaean (2019), however;

considering that equations in this part are very important

for this research, it will be rewritten.

3.1. Velocity Potential Equation

Velocity potential from linear wave theory which is the
product of Laplace equation operation (Dean, 1991) is
&(x,z,t) = Gecoskxcoshk (h + z)sinot ......(13)

xis horizontal axis,zis vertical axis where z = Oat the
surface of still water level, ttime, Gwave constant, k

wave number, o = 2?” angular frequency, T wave period
andh still water depth.

The equation was formulated at flat bottom condition,
however Hutahaean (2008) found out that the effect of
slopping bottom on velocity potential is small, only on its
hyperbolic term, i.e.
Flat bottom:

k(h+2) + e—k(h+z)

2

coshk (h + z) =

Slopping bottom:

B(z) = aekh+2) 4 o—klh+z)

Whereais a coefficient that is a function of bottom slope
(equation 14). It is seen thata =~ 1.Therefore, (13) can be
performed at sloping bottom where there will be values of

dk ac
—and—.
dx dx

dh dh
145 1-%=
.a:;( f’;g+—g_g> ...... (14)

=5 Yo

Pis bottomslope.
dx

3.2. Wave Number Conservation Equation

The velocity potential equation (13) is obtained from
variable separation method, where velocity potential is
considered as multiplication between 3 functions, i.e.
&(x,z,t) =X Z@DTE®), X&is just an xfunction
Z(2)is just a zfunction and T (t)is just a time function. At
(1), Z(z) = coshk(h + z). If (13) is performed at sloping
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bottom dz (z) _ dcosh k(h+2z) — sinh k(h + 2) d k(h+z) =0,
dx dx dx
in this equation the one with the value of zero is,
dk (h+z)
dx -

for all z value. Therefore the value ofk(h +2) =c,

where cis constant, i.e. the same for the entire flow fieldof

the wave moves. If(3) is performed on z = 0, then% =

Oor.
dk k dh
;— —;E ........... (16)

With (16), derivative equations higher than wave number

can be formulated, for example for z =0, by ignoring
a’h

ax?’

@k 2k (Hh)z

— === e 17
dx2 h2 \dx ( )

. . . ak @’k
From this point onward, the calculation of ——and—refers
X X

toz = 0. With (17) the third differential can be obtained,
and so forth. Based on (15), the following relations apply,
tanhk(h + 1) = tanhk,(hy + 1) = 1 ......(18a)

coshk (h + 1) = coshky(hy + n).......(180)

sinhk (h + 1) = sinhky(hy + 7)........ (18c)

coshky(hy + 1) = sinhky(hy + 1) ........ (18d)

Wherenis the water surface elevation. Therefore, based on
(18a-d), equations containing the three elements are
elements with values similar to the value in deep water.

3.3. Energy Conservation Equation
From velocity potential (1) horizontal-x velocity
equation is obtained

do dG
Uu=——= (Gksinkx - —coskx)
dx dx

coshk (h + z)sinat ........ (19)
du

dk dG
— = | Gk?coskx + G —sinkx + 2 — ksinkx
dx dx dx

d?G
— ——coskx
dx?

coshk (h + z)sinat ......(20)
and vertical—z velocity equation,

do
wlx,z,t) = a4, —Gkcoskxsinhk (h + z)sinot

Substitute equations (20) and (22) to continuity equation

i—z E;_\/sz Oand performed at the condition coskx =

, , VZ
sinkx = cosot = sinot = ?Zand z=n= f, then the

equation is divided by coshk (h + f) to obtain,

2
CE 42k om0 (23)
dx dx dx

This equation is another form of energy conservation

equation. This equation is a relation between Gand% The
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simplest way is by performing the assumption of a long
2
wave where %can be ignored, and in this case the

following equation is obtained,
ac G dk

—=— e (29)
dx 2k dx

(23) can be written as,

d° G dk dG

s G P + 2k Tp (25)

(25) is differentiated twice against horizontal-xaxis and
2

substituted to the term i‘—f , and an assumption is

4
performed that:Tfis a very small number that is
considered to be equal to zero which produce,

Z o fG 26
il | (26)
a3k _rdk\2 a2k ,dk
<ﬁ+5(5) +2kﬁ+4k I
n=— (482_k — 8k3) .......... 27
axz ' ax’

Therefore particle velocity equation at horizontal-
xdirection becomes

u = G(ksinkx — pcoskx)coshk (h + z)sinot

....(28)

V. DISPERSION EQUATION

At the potential velocity equation (13), there are 2 (two)
unknowns, i.e. energy constant Gand wave number k;
therefore, two equations are needed to calculate those two
unknowns. Governing equation for analyzing the two
unknowns are kinematic free surface boundary condition
and momentum equation. In its movement from the deep
water to shallower water, evolution or transformation of
the two unknown values will happen. The evolution is
arranged by wave number conservation equation (15) and
energy conservation (23) or (25). The two conservation
equations are absorbed to the two governing equations.

4.1 Kinematic Free Surface Boundary Condition

Using total derivative equation(12), kinematic free

.. d d
surface boundary condition becomes w, = y§+ uni .

Substitute (21) , (28) andn(x,t) = Acoskxcosatand the
equation is performed at the condition coskx = sinkx =
cosot = sinot,

G <k tanhk (h + %) —yoA— (k—p (%))

coshk (h+%) —yoA =0 ...(29)

4.2. Horizontal Momentum Equation

For a functionf = f(x, z,t), where the main change is in
the direction of horizontal-x axs, then (12) can be
performed to obtain total acceleration equation, and

horizontal-x and vertical-z total velocity equations are
Du du du du
Lo v tug tw e (30)
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dat dt dx
respectively, whereuis water particle velocity at

horizontal-xdirection and wis particle velocity vertical-z
direction. With (30) and (31), then Euler momentum
equation becomes

u a_“__la_l’
y +u +w = a (32)
w w a___la_p
yat+uax+waz— sz 9 (33)

At (33) the characteristics of irrotional flow is performed

at space differential, EE'[—: = 3—: and integrated against

vertical-z axis and dynamic free surface boundary

condition is performed where p, = 0, pressure equation is

obtained, i.e.

f—)=yfz E;—‘2de+ (u +W2)——(u +w?)
+g(n—2)

The pressure equation is differentiated against horizontal-

xaxis and substituted to (32) where at (32) the

characteristics of irrotional flow is performed

du d (Mdw (1

dn
—_— 2 —_
zax(u tw )+g )

Yo ="V =M

dt dx J, dt
The completion of —f — dzwnl be done using potential

velocity theory of the Ilnear wave theory(21).

dw
— = —Goksinhk(h + z) coskxcosot

w
f E[_ = —Go (coshk(h + 1) — coshk(h + 2))
z
coskxcosat
d (Mdw
a—j —dz = Go(coshk (h + 1) — coshk(h + 2))
z

(ksinkx — pcoskx) cosat
From (28),

w Go (ksinkx — ucoskx)coshk (h + z)cosat, hence

d d du d . .
f" 2 dz = —' —= | horizontal-xmomentum equation
Z at dt de

becomes
Elun

y I = (PE (2 4 wd) +g2)...(30

dt

4.3. Simple Dispersion Equation
To obtain a simple dispersion equation, convective
acceleration at (34) is ignored,

du a
y (E)z:n =—g a—: ........ (35)
Substitute (28) and water surface equation n(x,t) =
Acoskxcosat, and the equation is performed at the
condition coskx = sinkx = cosagt = sinot

yGo Gc — Weoshk (h +2) = gkA ...(36)

Equation (29) is written as an equation for Gand
substituted to (36),
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vic?(k — ) = gk (k tanhk (h + ';1) S G- (kA))

A 2
yic?=g (k tanhk (h + ;) - T) ...... (38)
If wave amplitude is considered as a very small number,
both to water depth and wave length, (38) becomes
2 = gktanhkh ......(39)
Then ify = 1is taken, (39) becomes

2 = gktanhkh ......(40)
(40) is a dispersion equation of linear wave theory (Dean,
1991).

Dispersion equations (37), (38), (39) and (40) have not
met wave number conservation equation. At (37) wave
number conservation equation (18a) is performed, hence

262(k — ) = gk (k — (k- ("7*‘)) ..... (41)
(41) is used to calculate wave number at the deep water.
The dispersion equation at the shallow water is obtained

by substituting wave number conservation (15) that can
be stated as

A A,
Keeping in mind thattanhk, (ho + %) =

1wherek, (ho Az ) Ym, this research used ¢y = 1.1,
wheretanh (1.1) = 0.998009,
k(h+2) =yn o= yn—kh .42
Substitute (42) to (41),

262(k —p) = gk(k — (k — ) (Y — kh) )...(43)
This equation is dispersion equation at the shallow water.
However,calculation with (43) should be performed
consecutively from deep water depth. To obtain deep
water depth,k,is calculated with (41), then deep water

depth hyis the deepest between k, (ho 2) Ym and

;—OS 0.10. For water depth more than h, the wave
0

number conservation equation can’t be applied.

4.4.Complete Dispersion Equation

In this complete dispersion equation, the surface
momentum equation is used completely and the wave
number conservation equation is applied. The resulted
equation is for calculating wave number at the shallow
water only. Substitute (42) to (29) the first f(k,G) =
Oequation is obtained.

fik,6) = G(k — (k — W @m — kh))

The second equation is surface momentum equation, i.e.
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£k, G) = ]/i-l-(za—(u +W2)+g 77) 0

Where,
d
% =yGo (k — pcoshk (h + é) ...(46a)
Elu-q A
u, — = 262k — Weosh?k (h + ;) -~--(46D)

D _ 1 2(y, _ 2y 4
wy = = =2 622 (e — Wsinkk (h +2) .. (46c)

g E = —2g (pm — kh) ...(46d)
At (46d) kAis substituted with wave number conservation
equation (42). Keep in mind that based on wave number

conservation equation, coshk (h + ?) is constant number,
i 4\ = 4o

ie. coshk (h + 2) = coshk, (ho +5 ),
calculated with (41) and deep water depth hyis the
fo4o) Land 22 < 0.10. The

2 kg 2hg

values of kandGcan be obtained by completing (35) and
(36) with Newton-Rhapson method, with the inputs wave
period, wave amplitude and water depth.

wherek,is

deepest betweenh, = (z/m -

V. THE ADJUSTMENT OF y VALUE

The value ofy = 3from the previous analysis is
theoretical value based only on Laplace equation solution.
In this part, the adjustment of yvalue will be done using
observation on deep water wave height. The adjustment is
done using the relation between deep water wave height
and wave period from Silvester (1974) and from Wiegel
(1949 and 1964).

By ignoring bottom slope, then (41) which is a dispersion
equation at deep water, becomes a quadratic equation for
k.

y20? = gk (1 — (%A)) ......... @47

This equation has a solution if the determinant value is
D = 0, where

_ 2_42(94 2 2
D=g 4(2 ) (y20?).
FOrD =0, A, = #With the value ofH,,, =

24,4 Wave period is calculated from empirical

equations of Silvester (1974), Ty, = /19.68H1/3and

. . Hp \05
Wiegel equation (1949 and 1964), Ty, = 15.6(7’") ,

H,, is maximum deep water wave height,gis the force of
gravity. As H1/3 andH,,,,H,,,, is used.

Table.3: Wave height maximum at deep water, aty =

2.483.
T Hmax TSil TWieg Hmax
(sec.) (m) (sec.) (sec.) 1
6 1,45 534 6 0,32
7 1,97 6,23 7 0,32
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8 2,58 7,12 8 0,32
9 3,26 8,02 9 0,32
10 4,03 8,91 10 0,32
1 4,88 9,8 11 0,32
12 58 10,69 12 0,32

13 6,81 11,58 13 0,32
14 79 12,47 14 0,32
15 9,07 13,36 15 0,32

The result of the calculation on Table (3) was done using
the value of y = 2.483 . Wavelength L on Table (3) was

calculated using (47) obtained that22%for all reviewed

wave period is 0.318 or;, where it is in accordance with

the analytical result ( Hutahaean (2019)) i.e. breaking

occurs whenIZ—I’:i, H, breaker height andL, breaker
b

length. Therefore H,,,,on column 2 is deep water wave
height maximum for wave period on column 1, where the
wave period is similar to Ty, ,and is close enough to
Tg; that was calculated using H,,,,0n column 2. Therefore
a conclusion can be made that the value of y = 2.483is a
quite good value, and the maximum deep water wave
height H,for wave period on column 1 is on column 2.

VL. EXAMPLE OF THE RESULT OF
WAVELENGTH CALCULATION
The example of the result of wavelength Lcalculation
wave with wave period of 8 second, withA, = 0.6 m

and% = —0.01 is shown on Fig.1., Fig 2. and Fig.3.

Fig.1 shows the comparison between wavelength (40),
(39), (38) and (43) where it is seen that (40) as dispersion
equation of linear wave theory produces wavelength that
is much longer than the three comparing equations.
Wavelength (39), (38) and (43) look close, but further
information can be seen on Fig.2.

80
60
40

20

Wave Length L (m)

0
0 2 4 6 8 10

Water Depth h (m)

eq. (40) eq. (39)
eq. (38) eq. (43)

Fig.1: Comparison between wavelength (40), (39), (38)
and (43).
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20

m)

=
o un

o

Wave Length L (
(92

0 2 4 6 8 10
Water Depth h (m)

eq. (39) eq. (38)
eq. (43) eq. (44+45)

Fig.2: Wavelength (39), (38), (43) and (44+45)

Fig. 2 shows the result of the calculation using (39), (38),
(43) and (44+45). At shallow water, wavelength from
(39) and (38) looks much bigger than from (43) and
(44+45). Whereas at deep water, (38) produces
wavelength similar to that of (43) and (44+45). This
shows that wave number conservation has a major role in
the transformation of wavelength at shallow water, where
at (39) and (38) wave number conservation equation is
not performed. In addition, the changes in wavelength
from (43) and (44+45) look linear which shows that the
changes in wavelength as a result of water depth changes
is dominated by wave number conservation equation (15).
Between (39) and (38), there is a relatively big difference,
where at (39) there is no wave amplitude as its variable as
it is with (38). This shows that the effect of wave
amplitude on wavelength is shortening wavelength. To
study the effect of wave amplitude on wavelength, (38) is
performed with different wave amplitude, i.e. 0.30 m and
0.60 m, with the result as presented on Fig. 3, which
shows that wavelength from a wave with wave amplitude
0.30 m is longer that wavelength of a wave with wave
amplitude of 0.60 m.
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Fig.3: Wavelength (38) with different wave amplitude A
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VII. CONCLUSION
This research concludes that at a space and time function,
there is a time scale coefficient at total change or total
acceleration. For a function f(x,z t)with the main
direction of change at axis—x direction, the total
acceleration coefficient has a value of 2483. The
application of total acceleration equation with time scale
coefficient at wavelength analysis produces wavelength
that fits with the one exists in the nature.
There are 3 factors affecting wavelength, i.e. total
acceleration equation, wave number conservation law and
wave amplitude. However, the main factors are the first
and the third factors. Total acceleration plays a role in
determining wavelength as a whole i.e at deep water and
shallow water, wave number conservation equation plays
a role in the transformation of wavelength at the change
of water depth at shallow water. With the presence of
wave amplitude effect on wavelength, the correct
wavelength analysis is if it is performed together with
shoaling analysis.
Convective acceleration term at the momentum equation
is shortening wavelength although it is relatively small.
For practical purposes dispersion equation formulated
without taking into account convective acceleration can
be used.
Wavelength research with physical model has never been
done before. Considering that the truth of a wave theory is
also shown by the produced wavelength, therefore the
availability of wavelength data as the result of physical
model is highly needed.
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