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Abstract—In this research, total acceleration equation is 

formulated where there is time scale coefficient at its time 

differential term. The formulation was done based on 

Courant Number equation and by using Taylor series. 

Then this total acceleration is applied to kinematic free 

surface boundary condition and Euler momentum 

equations. Potential velocity and water surface equations 

of linear water wave theory as well as wave number 

conservation equation were substituted to momentum and 

kinematic free surface boundary condition equations 

produced dispersion equation with wave amplitude as its 

variable and which fits with wave number conservation 

equation. Wave number conservation equation is an 

equation that regulates changes in wavelength as a result 

of water depth changes. This equation was extracted from 

potential velocity equation. 

Keywords—Courant Number, Taylor Series, Total 

Derivative, Wave Number Conservation Equation. 

 

I. INTRODUCTION 

This research aims at finding a dispersion equation with a 

wavelength that fits with what exists in the nature. 

Dispersion equation of linear wave theory (Dean, 1991), 

was formulated using kinematic free surface boundary 

condition and Bernoulli equations where this Bernoulli 

equation is formulated from Euler momentum equation. 

Both at the kinematic free surface boundary condition and 

Euler momentum equations there are total change term of 

spatial and time function.  

In the formulation of total acceleration equation, it is 

defined that at lim𝑑𝑥 and 𝑑𝑡 close to zero, 𝑢 =
𝑑𝑥

𝑑𝑡
, where 

𝑢 is a velocity of material movement. Courant number in 

fluid mechanics (1928) stated that in order to be defined 

that 𝑢 =
𝑑𝑥

𝑑𝑡
, there are certain criteria for the size of space 

length (𝑑𝑥) and time step (𝑑𝑡). In general, it can be stated 

that in order to be defined that at lim𝑑𝑥 and 𝑑𝑡 close to 

zero, 𝑢 =
𝑑𝑥

𝑑𝑡
, there are certain conditions.  

The accuracy of Taylor series is determined not only by 

the number of its terms but also by its interval size. 

Meanwhile, Taylor series is often used only up to the first 

derivative where in this case, truncation error can only be 

reduced by reducing the s ize of its interval. Based on 

Courant criteria it is assumed that Taylor series for a 

spatial and time function must contain a coefficient at the 

time interval. Then minimizing truncation error at Taylor 

series obtains time coefficient value and interval s ize that 

produces the level of accuracy that fits with what has been 

demanded.  

 

II. THE FORMULATION OF TOTAL 

ACCELERATION EQUATION WITH 

COEFFICIENT  

In this section total acceleration equation will be 

formulated where there is a coefficient at the time 

differential term. 

 

2.1. Base of the Theory  

a. Courant Number 

Courant (1928) introduced Courant Number which is a 

criteria relation between length interval (𝛿𝑥) with time 

step (𝛿𝑡) to conduct numerical analysis at the fluid flow, 

i.e.  

𝐶 =
𝑢𝛿𝑡

𝛿𝑥
< 𝐶𝑚𝑎𝑥   .......(1) 

where 𝑢is a velocity, 𝛿𝑡is time step and 𝛿𝑥 is length 

interval,𝐶𝑚𝑎𝑥 = 1. If at (1) 𝑢 =
𝛿𝑥

𝛿𝑡
is defined, hence 𝐶 = 1 

which does not meet the Courant Number criteria.  

However, if  𝑢 =
𝛿𝑥

𝛾𝛿𝑡
is defined where 𝛾 is a positive 

number greater than 1, then it will meet (1). From this 

equation, a conclusion can be made that there is a 

coefficient 𝛾 at time step 𝛿𝑡 to define a velocity. This 

coefficient can be stated as a time scale coefficient.  

 

b. Taylor Series Review 

Taylor series is often used only up to the first derivative 

or with an accuracy of  𝑂(𝛿1)at numerical analysis as 

well as the formulation of a conservation law. Total 

acceleration equation, at Euler momentum equation at 

fluid flow, is also often formulated using Taylor series 

𝑂(𝛿1). Using Taylor series up to the first derivative, the 

accuracy is depended only on the interval measurement. 

https://dx.doi.org/10.22161/ijaers.6.2.31
http://www.ijaers.com/


International Journal of Advanced Engineering Research and Science (IJAERS)                                  [Vol-6, Issue-2, Feb- 2019] 

https://dx.doi.org/10.22161/ijaers.6.2.31                                                                                  ISSN: 2349-6495(P) | 2456-1908(O) 

www.ijaers.com                                                                                                                                                                            Page | 252  

Therefore, interval size that produces a good accuracy 

should be determined. . 

For a continuous function 𝑓 = 𝑓(𝑥, 𝑡), where 𝑥is 

horizontal axis and 𝑡is time,  Taylor series approach 

𝑂(𝛿1) (Thomas (1996)), 

𝑓(𝑥 + 𝛿𝑥, 𝑡 + 𝛿𝑡) = 𝑓(𝑥, 𝑡) + 𝛿𝑥
Ƌ𝑓

Ƌ𝑥
+ 𝛿𝑡

Ƌ𝑓

Ƌ𝑡
 

Using time scale coefficient γ, 

𝑓(𝑥 + 𝛿𝑥, 𝑡 + 𝛾𝛿𝑡) = 𝑓(𝑥, 𝑡) + 𝛿𝑥
Ƌ𝑓

Ƌ𝑥
+ 𝛾𝛿𝑡

Ƌ𝑓

Ƌ𝑡
 

........(2) 

At (2) there is a truncation error, 

𝑅 =
𝛿𝑥2

2

Ƌ2𝑓

Ƌ𝑥2 +
𝛾2 𝛿𝑡2

2

Ƌ2 𝑓

Ƌ𝑡2 + 𝛿𝑥 𝛾𝛿𝑡
Ƌ2 𝑓

Ƌ𝑥Ƌ𝑡
+ ⋯ 

𝑅can be ignored if  

|
𝑅

𝛿𝑥
Ƌ𝑓

Ƌ𝑥
+𝛾𝛿𝑡

Ƌ𝑓

Ƌ𝑡

| < ɛ      .......(3) 

where ɛis a very small number. (3) can be achieved by a 

small size of 𝛿𝑥and𝛿𝑡and with a time scale value of γ. 

The size of𝛿𝑥and𝛿𝑡and the value of γ where Taylor series 

can be used only up to the first derivative can be 

determined with (3).  

 

2.2. Determining 𝛿𝑥 ,𝛿𝑡 and 𝛾. 

With an assumption that there are the values of 

𝛿𝑥 ,𝛿𝑡and𝛾, where the number of the third derivative term 

with higher derivatives is much smaller than the number 

of the second derivative term, then as 𝑅, only the second 

derivative that can be used, and (3) becomes  

|
𝛿 𝑥2

2
Ƌ2𝑓

Ƌ𝑥2+
𝛾2𝛿𝑡2

2
Ƌ2𝑓

Ƌ𝑡2 +𝛾𝛿𝑥𝛿𝑡
Ƌ2𝑓

Ƌ𝑥Ƌ𝑡

𝛿𝑥
Ƌ𝑓

Ƌ𝑥
+𝛾𝛿𝑡

Ƌ𝑓

Ƌ𝑡

| < ɛ    ......(4) 

Wave length is 𝐿 = 𝐶𝑇where𝐶  is wave celereties or wave 

velocity and T is wave period.   From this wave length 

equation, 𝛿𝑥 = 𝐶𝛿𝑡 is defined. With 𝐿 =
2𝜋

𝑘
where 𝑘is 

wave number, relation 𝐶 =
𝜎

𝑘
 is obtained, then,  

𝛿𝑥 =
𝜎𝛿𝑡

𝑘
     ..........(5) 

Substitute (5) to (4) and the upper and lower part of the 

equation are divided by 𝛿𝑡 

|
1

2
(𝜎

𝑘
)

2
𝛿𝑡

Ƌ2f

Ƌx2+γ(𝜎

𝑘
𝛿𝑡) Ƌ2f

ƋtƋx
+

γ2δt

2

Ƌ2f

Ƌt2

(
𝜎

𝑘
)

Ƌf

Ƌx
+γ

Ƌf

Ƌt

| < ɛ ....(6)  

Furthermore a sinusoidal function is reviewed with the 

form𝑓(𝑥, 𝑡) = 𝑐𝑜𝑠𝑘𝑥𝑐𝑜𝑠𝜎𝑡 . This equation is a water 

wave surface elevation  equation of the linear wave theory 

(Dean, 1991). Substitute 𝑓(𝑥, 𝑡) = 𝑐𝑜𝑠𝑘𝑥𝑐𝑜𝑠𝜎𝑡 to (6) and 

perform it at the condition 𝑐𝑜𝑠𝑘𝑥 = 𝑠𝑖𝑛𝑘𝑥 = 𝑐𝑜𝑠𝜎𝑡 =

𝑠𝑖𝑛𝜎𝑡, will produce 

|−
1
2

+ 𝛾−
𝛾2

2
|𝜎𝛿𝑡

(1+𝛾)
≤ ɛ    ....(7) 

At (7), the lower part of equation can be taken out from 

the absolute operation| |, since it always has positive 

value. At (7) there are two unknowns, i.e. 𝛾and𝛿𝑡. 

Another equation is needed, therefore Taylor series is 

performed with a change in 𝑡time only, 

𝑓(𝑥, 𝑡 + 𝛿𝑡) = 𝑓(𝑥, 𝑡) + 𝛿𝑡
𝑑𝑓

𝑑𝑡
+

𝛿𝑡2

2

𝑑2 𝑓

𝑑 𝑡2 + ⋯ (8) 

In this case the time scale coefficient γ was not performed 

since the one to be reviewed is only the change in 

function against time 𝑡. In order for (8) to be able to be 

performed only up to the first derivative, then  

|
𝛿 𝑡2

2
𝑑2𝑓

𝑑𝑡2

𝛿𝑡
𝑑𝑓

𝑑𝑡

| ≤ ɛ ....(9) 

Substitute𝑓(𝑥, 𝑡) = 𝑐𝑜𝑠𝑘𝑥𝑐𝑜𝑠𝜎𝑡to (9) and the equation is 

performed at 𝑐𝑜𝑠𝑘𝑥 = 𝑠𝑖𝑛𝑘𝑥 = 𝑐𝑜𝑠𝜎𝑡 = 𝑠𝑖𝑛𝜎𝑡, hence 

𝛿𝑡𝑚𝑎𝑥 <
2ɛ

𝜎
   ....(10) 

𝛿𝑡at (10) is the value of 𝛿𝑡𝑚𝑎𝑥 since it is determined only 

based on the function of time without the interaction with 

the changes toward space. With𝛿𝑡 = 𝛿𝑡𝑚𝑎𝑥 , the value of γ  

can be calculated at  (7). 

 

Table.1: The Value of 𝛾and𝛿𝑡𝑚𝑎𝑥 for 𝑓(𝑥, 𝑡) =

𝑐𝑜𝑠𝑘𝑥𝑐𝑜𝑠𝜎𝑡 . 

 𝛾 𝛿𝑡𝑚𝑎𝑥  

Wave period 𝑇: 7 sec. 

𝑅2 3 0,02228 

𝑅3 3,14301 0,02243 

𝑅4 3,15978 0,02214 

Wave period 𝑇: 8 sec. 

𝑅2 3 0,02547 

𝑅3 3,14301 0,02564 

𝑅4 3,15978 0,0253 

Wave period 𝑇: 9 sec. 

𝑅2 3 0,02865 

𝑅3 3,14301 0,02884 

𝑅4 3,15978 0,02846 

Wave period 𝑇: 10 sec. 

𝑅2 3 0,03183 

𝑅3 3,14301 0,03205 

𝑅4 3,15978 0,03162 

 

Table (1) presents the result of the calculation of values 

𝛾and𝛿𝑡𝑚𝑎𝑥 for various wave periods and various level of 

accuracy 𝑅, where𝑅2shows that 𝑅is calculated only with 

the second derivative only, 𝑅3shows that𝑅is calculated up 

to the third derivative and 𝑅4 , 𝑅is calculated up to the 

fourth derivative. It can be seen that for the same period, 

the higher the accuracy of  𝑅the bigger the value of γ but 

with small change. Whereas at the similar accuracy level 

of  𝑅, for different wave period, the value of γ is the same.  

The uses of accuracy up to 𝑅5does not change the value 
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of  γconsidering the terms of 
𝛿𝑥5

120
and

𝛿𝑡5

120
at𝑅5is a very small 

number close to zero.  

 

The function 𝑓(𝑥, 𝑡) = 𝑐𝑜𝑠𝑘𝑥𝑐𝑜𝑠𝜎𝑡 has been used to 

calculate the value γ. If the form of function 𝑓(𝑥, 𝑡) =

𝑠𝑖𝑛𝑘𝑥  𝑠𝑖𝑛𝜎𝑡 is used, where this equation is the change of 

water particle velocity at space and time for standing 

wave, then relation equation between 𝛾and𝛿𝑡is obtained 

which is similar to (7) for accuracy 𝑅2, i.e. 

|−
1
2

+ 𝛾−
𝛾2

2
|𝜎𝛿𝑡

(1+𝛾)
< ɛ    .......(11) 

However, accuracies𝑅3and𝑅4have different shapes and 

produce different value 𝛾, although with a not too big 

different, as shown on Table (2).  

 

Table.2: The Value of𝛾and𝛿𝑡𝑚𝑎𝑥 for𝑓(𝑥, 𝑡) = 𝑠𝑖𝑛𝑘𝑥𝑠𝑖𝑛𝜎𝑡  

 

Table (2) shows that at 𝑓(𝑥, 𝑡) = 𝑠𝑖𝑛𝑘𝑥𝑠𝑖𝑛𝜎𝑡 ,the value of 

γ is fluctuating against the level of accuracy 𝑅but with 

relatively small fluctuation. From the two analysis of 

coefficient γ for the two shapes of the function, the 

hydrodynamic analysis for water wave can use the value 

of 𝛾 = 3. For numerical analysis where discretization of 

space and time is needed, than the space length size 𝛿𝑥 =
𝜎𝛿𝑡𝑚𝑎𝑥

𝑘
with time step𝛿𝑡 =

𝛿𝑡𝑚𝑎𝑥

𝛾
. 

 

2.3. Total Acceleration with coefficient  

As has been shown that by performing coefficient on time 

differential term, Taylor series can be performed up to the 

first derivative, i.e.  

𝑓(𝑥 + 𝛿𝑥, 𝑡 + 𝛿𝑡) = 𝑓(𝑥, 𝑡) + 𝛾𝛿𝑡
Ƌ𝑓

Ƌ𝑡
+ 𝛿𝑥

Ƌ𝑓

Ƌ𝑥
 

The first term of the right side of the equation is moved to 

the left and the equation is divided by 𝛿𝑡 

𝑓(𝑥 + 𝛿𝑥, 𝑡 + 𝛿𝑡) − 𝑓(𝑥, 𝑡)

𝛿𝑡
= 𝛾

Ƌ𝑓

Ƌ𝑡
+

𝛿𝑥

𝛿𝑡

Ƌ𝑓

Ƌ𝑥
 

With the presence of time coefficient 𝛾at time differential 

term, it can be defined that at lim𝛿𝑥 , 𝛿𝑡approaches zero 

can be defined that
𝛿𝑥

𝛿𝑡
= 𝑢. Therefore, the total 

acceleration equation is  
𝐷𝑓

𝑑𝑡
= 𝛾

Ƌ𝑓

Ƌ𝑡
+ 𝑢

Ƌ𝑓

Ƌ𝑥
  ........(12) 

 

III. EQUATIONS FROM VELOCITY 

POTENTIAL  

This part has been written by Hutahaean (2019), however; 

considering that equations in this part are very important 

for this research, it will be rewritten.  

 

3.1. Velocity Potential Equation 

Velocity potential  from linear wave theory which is the 

product of Laplace equation operation (Dean, 1991) is   

𝛷(𝑥, 𝑧, 𝑡) = 𝐺𝑐𝑜𝑠𝑘𝑥𝑐𝑜𝑠ℎ𝑘 (ℎ + 𝑧)𝑠𝑖𝑛𝜎𝑡 ......(13) 

𝑥is horizontal axis,𝑧is vertical axis where 𝑧 = 0at the 

surface of still water level, 𝑡time, 𝐺wave constant, 𝑘 

wave number, 𝜎 =
2𝜋

𝑇
, angular frequency, 𝑇  wave period 

andℎ still water depth. 

 

The equation was formulated at flat bottom condition, 

however Hutahaean (2008) found out that the effect of 

slopping bottom on velocity potential is small, only on its 

hyperbolic term, i.e.  

Flat bottom : 

𝑐𝑜𝑠ℎ𝑘 (ℎ + 𝑧) =
𝑒𝑘(ℎ+𝑧)

+ 𝑒−𝑘(ℎ+𝑧)

2
 

Slopping bottom : 

𝛽(𝑧) = 𝛼𝑒𝑘(ℎ+𝑧)
+ 𝑒 −𝑘(ℎ+𝑧)

 

Where𝛼is a coefficient that is a function of bottom slope 

(equation 14).  It is seen that𝛼 ≈ 1.Therefore, (13) can be 

performed at sloping bottom where there will be values of 
Ƌ𝑘

Ƌ𝑥
and

Ƌ𝐺

Ƌ𝑥
. 

. 𝛼 =
1

2
(

1+
𝜕ℎ
𝜕𝑥

1−
𝜕ℎ

𝜕𝑥

+
1−

𝜕ℎ
𝜕𝑥

1+
𝜕ℎ

𝜕𝑥

) ......(14) 

Ƌℎ

Ƌ𝑥
is bottom slope. 

 

3.2. Wave Number Conservation Equation 

The velocity potential equation (13) is obtained from 

variable separation method, where velocity potential is 

considered as multiplication between 3 functions, i.e. 

𝛷(𝑥, 𝑧, 𝑡) = 𝑋(𝑥) 𝑍(𝑧) 𝑇(𝑡) ,  𝑋(𝑥)is just an 𝑥function 

,𝑍(𝑧)is just a 𝑧function and 𝑇(𝑡)is just a time function. At 

(1), 𝑍(𝑧) = cosh 𝑘(ℎ + 𝑧). If (13) is performed at sloping 

 

𝛾 

 

 

𝛿𝑡𝑚𝑎𝑥  

 (sec.) 

Wave period 𝑇 = 7 sec. 

𝑅2 3 0,02228 

𝑅3 2,85619 0,02243 

𝑅4 2,87499 0,02214 

Wave period 𝑇 = 8 sec 

𝑅2 3 0,02547 

𝑅3 2,85619 0,02564 

𝑅4 2,87499 0,0253 

Wave period 𝑇 = 9 sec 

𝑅2 3 0,02865 

𝑅3 2,85619 0,02884 

𝑅4 2,87499 0,02846 

Wave period 𝑇 = 9 sec 

𝑅2 3 0,03183 

𝑅3 2,85619 0,03205 

𝑅4 2,87499 0,03162 
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bottom 
Ƌ𝑍 (𝑧)

Ƌ𝑥
=

Ƌ cosh 𝑘(ℎ+𝑧)

Ƌ𝑥
= sinh 𝑘(ℎ + 𝑧) Ƌ 𝑘(ℎ+𝑧)

Ƌ𝑥
= 0, 

in this equation the one with the value of zero is , 
Ƌ𝑘 (ℎ+𝑧)

Ƌ𝑥
= 0 ..................(15)                                                                                                           

for all 𝑧 value. Therefore the value of𝑘(ℎ + 𝑧) = 𝑐 ,  

where 𝑐is constant, i.e. the same for the entire flow fieldof  

the wave moves. If(3) is performed on 𝑧 = 0, then
Ƌ𝑘ℎ

Ƌ𝑥
=

0or, 
Ƌ𝑘

Ƌ𝑥
= −

𝑘

ℎ

Ƌℎ

Ƌ𝑥
    ...........(16) 

With (16), derivative equations higher than wave number 

can be formulated, for example for 𝑧 = 0, by ignoring 

Ƌ2 ℎ

Ƌ𝑥2
, 

Ƌ2 𝑘

Ƌ𝑥2 =
2𝑘

ℎ2
(

Ƌℎ

Ƌ𝑥
)

2

  ............(17) 

From this point onward, the calculation of 
Ƌ𝑘

Ƌ𝑥
and

Ƌ2 𝑘

Ƌ𝑥2 refers 

to𝑧 = 0. With (17) the third differential can be obtained, 

and so forth. Based on (15), the following relations apply,  

𝑡𝑎𝑛ℎ𝑘(ℎ + 𝜂) = 𝑡𝑎𝑛ℎ 𝑘0
(ℎ0 + 𝜂) = 1  ......(18a) 

𝑐𝑜𝑠ℎ𝑘 (ℎ + 𝜂) = 𝑐𝑜𝑠ℎ𝑘0
(ℎ0 + 𝜂)........(18b) 

𝑠𝑖𝑛ℎ𝑘 (ℎ + 𝜂) = 𝑠𝑖𝑛ℎ𝑘0
(ℎ0 + 𝜂)........(18c) 

𝑐𝑜𝑠ℎ𝑘0
(ℎ0 + 𝜂) = 𝑠𝑖𝑛ℎ 𝑘0

(ℎ0 + 𝜂) ........(18d)  

Where𝜂is the water surface elevation. Therefore, based on 

(18a-d), equations containing the three elements are 

elements with values similar to the value in deep water.  

 

3.3. Energy Conservation Equation  

From velocity potential  (1) horizontal−𝑥 velocity 

equation is obtained  

𝑢 = −
Ƌ𝛷

Ƌ𝑥
= (𝐺𝑘𝑠𝑖𝑛𝑘𝑥 −

Ƌ𝐺

Ƌ𝑥
𝑐𝑜𝑠𝑘𝑥) 

𝑐𝑜𝑠ℎ𝑘 (ℎ + 𝑧)𝑠𝑖𝑛𝜎𝑡   ..........(19)                               

Ƌ𝑢

Ƌ𝑥
= (𝐺 𝑘2𝑐𝑜𝑠𝑘𝑥 + 𝐺

Ƌ𝑘

Ƌ𝑥
𝑠𝑖𝑛𝑘𝑥 + 2

Ƌ𝐺

Ƌ𝑥
𝑘𝑠𝑖𝑛𝑘𝑥

−
Ƌ2𝐺

Ƌ𝑥2
𝑐𝑜𝑠𝑘𝑥)  

𝑐𝑜𝑠ℎ𝑘 (ℎ + 𝑧)𝑠𝑖𝑛𝜎𝑡  ......(20) 

and vertical−𝑧 velocity equation, 

𝑤(𝑥, 𝑧, 𝑡) = −
Ƌ𝛷

Ƌ𝑧
= −𝐺𝑘𝑐𝑜𝑠𝑘𝑥𝑠𝑖𝑛ℎ𝑘 (ℎ + 𝑧)𝑠𝑖𝑛𝜎𝑡 

......(21) 
Ƌ𝑤

Ƌ𝑧
= −𝐺𝑘2𝑐𝑜𝑠𝑘𝑥𝑐𝑜𝑠ℎ𝑘 (ℎ + 𝑧)𝑠𝑖𝑛𝜎𝑡 .....(22) 

Substitute equations (20) and (22) to continuity equation 
Ƌ𝑢

Ƌ𝑥
+

Ƌ𝑤

Ƌ𝑧
= 0and performed at the condition 𝑐𝑜𝑠𝑘𝑥 =

𝑠𝑖𝑛𝑘𝑥 = 𝑐𝑜𝑠𝜎𝑡 = 𝑠𝑖𝑛𝜎𝑡 =
√2

2
and 𝑧 = 𝜂 =

𝐴

2
, then the 

equation is divided by 𝑐𝑜𝑠ℎ𝑘 (ℎ +
𝐴

2
), to obtain, 

𝐺
Ƌ𝑘

Ƌ𝑥
+ 2𝑘

Ƌ𝐺

Ƌ𝑥
−

Ƌ2 𝐺

Ƌ𝑥2 = 0..................(23) 

This equation is another form of energy conservation 

equation. This equation is a relation between 𝐺and
Ƌ𝐺

Ƌ𝑥
. The 

simplest way is by performing the assumption of a long 

wave where  
Ƌ2𝐺

Ƌ𝑥2 can be ignored, and in this case the 

following equation is obtained,  
Ƌ𝐺

Ƌ𝑥
= −

𝐺

2𝑘

Ƌ𝑘

Ƌ𝑥
,                                 .................(24)   

(23) can be written as, 

Ƌ2 𝐺

Ƌ𝑥2 = 𝐺
Ƌ𝑘

Ƌ𝑥
+ 2𝑘

Ƌ𝐺

Ƌ𝑥
  .....................(25) 

 (25) is differentiated  twice against horizontal-𝑥axis and 

substituted  to the term 
Ƌ2𝐺

Ƌ𝑥2  , and an assumption is 

performed that
Ƌ4 𝐺

Ƌ𝑥4 is a very small number that is 

considered to be equal to zero which produce, 
Ƌ𝐺

Ƌ𝑥
= µ𝐺     .........(26) 

µ = −
(

Ƌ3𝑘

Ƌ𝑥3+5(
Ƌ𝑘

Ƌ𝑥
)

2
+2𝑘

Ƌ2𝑘

Ƌ𝑥2+4𝑘2 Ƌ𝑘

Ƌ𝑥
)

(4
Ƌ2𝑘

Ƌ𝑥2+16𝑘
Ƌ𝑘

Ƌ𝑥
+8𝑘3 )

    ..........(27) 

Therefore particle velocity equation at horizontal-

𝑥direction becomes 

𝑢 = 𝐺(𝑘𝑠𝑖𝑛𝑘𝑥 − µ𝑐𝑜𝑠𝑘𝑥)𝑐𝑜𝑠ℎ𝑘 (ℎ + 𝑧)𝑠𝑖𝑛𝜎𝑡 

....(28) 

 

IV. DISPERSION EQUATION  

At the potential velocity equation (13), there are 2 (two) 

unknowns, i.e. energy constant 𝐺and wave number 𝑘; 

therefore, two equations are needed to calculate those two 

unknowns. Governing equation for analyzing the two 

unknowns are kinematic free surface boundary condition 

and momentum equation. In its movement from the deep 

water to shallower water, evolution or transformation of 

the two unknown values will happen. The evolution is 

arranged by wave number conservation equation (15) and 

energy conservation (23) or (25). The two conservation 

equations are absorbed to the two governing equations.  

 

4.1 Kinematic Free Surface Boundary Condition 

Using total derivative equation(12), kinematic free 

surface boundary condition becomes 𝑤𝜂 = 𝛾
Ƌ𝜂

Ƌ𝑡
+ 𝑢𝜂

Ƌ𝜂

Ƌ𝑥
 . 

Substitute (21) , (28) and𝜂(𝑥, 𝑡) = 𝐴𝑐𝑜𝑠𝑘𝑥𝑐𝑜𝑠𝜎𝑡 and the 

equation is performed at the condition 𝑐𝑜𝑠𝑘𝑥 = 𝑠𝑖𝑛𝑘𝑥 =

𝑐𝑜𝑠𝜎𝑡 = 𝑠𝑖𝑛𝜎𝑡 , 

𝐺 (𝑘 𝑡𝑎𝑛ℎ𝑘 (ℎ +
𝐴

2
) − 𝛾𝜎𝐴 − (𝑘 − µ) (

𝑘𝐴

2
))  

 𝑐𝑜𝑠ℎ𝑘 (ℎ +
𝐴

2
) − 𝛾𝜎𝐴 = 0 ....(29) 

 

4.2. Horizontal Momentum Equation  

For a function𝑓 = 𝑓(𝑥, 𝑧, 𝑡) , where the main change is in 

the direction of  horizontal-𝑥  axis, then (12) can be 

performed to obtain total acceleration equation, and 

horizontal-𝑥  and vertical-𝑧 total velocity equations are  
𝐷𝑢

𝑑𝑡
= 𝛾

Ƌ𝑢

Ƌ𝑡
+ 𝑢

Ƌ𝑢

Ƌ𝑥
+ 𝑤

Ƌ𝑢

Ƌ𝑧
   .......(30) 
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𝐷𝑤

𝑑𝑡
= 𝛾

Ƌ𝑤

Ƌ𝑡
+ 𝑢

Ƌ𝑤

Ƌ𝑥
+ 𝑤

Ƌ𝑤

Ƌ𝑧
........(31)   

respectively, where𝑢is water particle velocity at 

horizontal-𝑥direction and 𝑤is particle velocity vertical-𝑧 

direction. With (30) and (31), then Euler momentum 

equation becomes, 

𝛾
Ƌ𝑢

Ƌ𝑡
+ 𝑢

Ƌ𝑢

Ƌ𝑥
+ 𝑤

Ƌ𝑢

Ƌ𝑧
= −

1

𝜌

Ƌ𝑝

Ƌ𝑥
  ......(32) 

𝛾
Ƌ𝑤

Ƌ𝑡
+ 𝑢

Ƌ𝑤

Ƌ𝑥
+ 𝑤

Ƌ𝑤

Ƌ𝑧
= −

1

𝜌

Ƌ𝑝

Ƌ𝑧
− 𝑔  .......(33)    

At (33) the characteristics of irrotional flow is performed 

at space differential, 
Ƌ𝑤

Ƌ𝑥
=

Ƌ𝑢

Ƌ𝑧
, and integrated against  

vertical-𝑧 axis and dynamic free surface boundary 

condition is performed where 𝑝𝜂 = 0, pressure equation is 

obtained, i.e.  

𝑝

𝜌
= 𝛾 ∫

Ƌ𝑤

Ƌ𝑡
𝑑𝑧

𝜂

𝑧

+
1

2
(𝑢𝜂

2 + 𝑤𝜂
2) −

1

2
(𝑢2 + 𝑤 3) 

+𝑔(𝜂 − 𝑧) 

The pressure equation is differentiated against horizontal-

𝑥axis and substituted to (32) where at (32) the 

characteristics of irrotional flow is performed 

𝛾
Ƌ𝑢

Ƌ𝑡
= −𝛾

Ƌ

Ƌ𝑥
∫

Ƌ𝑤

Ƌ𝑡
𝑑𝑧

𝜂

𝑧

− (
1

2

Ƌ

Ƌ𝑥
(𝑢𝜂

2 + 𝑤𝜂
2) + 𝑔

Ƌ𝜂

Ƌ𝑥
) 

The completion of 
Ƌ

Ƌ𝑥
∫

Ƌ𝑤

Ƌ𝑡
𝑑𝑧

𝜂

𝑧 will be done using potential 

velocity theory of the linear wave theory(21). 

Ƌ𝑤

Ƌ𝑡
= −𝐺𝜎𝑘𝑠𝑖𝑛ℎ𝑘(ℎ + 𝑧) 𝑐𝑜𝑠𝑘𝑥𝑐𝑜𝑠𝜎𝑡  

∫
Ƌ𝑤

Ƌ𝑡
𝑑𝑧

𝜂

𝑧

= −𝐺𝜎 (𝑐𝑜𝑠ℎ𝑘(ℎ + 𝜂) − 𝑐𝑜𝑠ℎ𝑘(ℎ + 𝑧)) 

𝑐𝑜𝑠𝑘𝑥𝑐𝑜𝑠𝜎𝑡  

Ƌ

Ƌ𝑥
∫

Ƌ𝑤

Ƌ𝑡
𝑑𝑧

𝜂

𝑧

= 𝐺𝜎(𝑐𝑜𝑠ℎ𝑘 (ℎ + 𝜂) − 𝑐𝑜𝑠ℎ𝑘(ℎ + 𝑧)) 

(𝑘𝑠𝑖𝑛𝑘𝑥 − µ𝑐𝑜𝑠𝑘𝑥) 𝑐𝑜𝑠𝜎𝑡 

From (28), 
Ƌ𝑢

Ƌ𝑡
= 𝐺𝜎(𝑘𝑠𝑖𝑛𝑘𝑥 − µ𝑐𝑜𝑠𝑘𝑥)𝑐𝑜𝑠ℎ𝑘 (ℎ + 𝑧)𝑐𝑜𝑠𝜎𝑡, ,hence  

Ƌ

Ƌ𝑥
∫

Ƌ𝑤

Ƌ𝑡
𝑑𝑧

𝜂

𝑧 =
Ƌ𝑢𝜂

Ƌ𝑡
−

Ƌ𝑢

Ƌ𝑡
 ,  horizontal-𝑥momentum equation 

becomes 

𝛾
Ƌ𝑢𝜂

Ƌ𝑡
= − (

1

2

Ƌ

Ƌ𝑥
(𝑢𝜂

2 + 𝑤𝜂
2) + 𝑔

Ƌ𝜂

Ƌ𝑥
) .....(34) 

 

4.3. Simple Dispersion Equation 

To obtain a simple dispersion equation, convective 

acceleration  at (34) is ignored, 

𝛾 (
∂u

∂t
)

z=η
= −𝑔

∂η

∂x
     ........(35) 

Substitute (28) and water surface equation 𝜂(𝑥, 𝑡) =

𝐴𝑐𝑜𝑠𝑘𝑥𝑐𝑜𝑠𝜎𝑡 , and the equation is performed at the 

condition 𝑐𝑜𝑠𝑘𝑥 = 𝑠𝑖𝑛𝑘𝑥 = 𝑐𝑜𝑠𝜎𝑡 = 𝑠𝑖𝑛𝜎𝑡 

𝛾𝐺𝜎 (𝑘 − µ)𝑐𝑜𝑠ℎ𝑘 (ℎ +
𝐴

2
) = 𝑔𝑘𝐴   ....(36) 

Equation (29) is written as an equation for 𝐺and 

substituted to (36),  

𝛾2𝜎 2(𝑘 − µ) = 𝑔𝑘 (𝑘 𝑡𝑎𝑛ℎ𝑘 (ℎ +
𝐴

2
) − (𝑘 − µ) (

𝑘𝐴

2
))  

        .......(37) 

If the bottom slope is ignored, then (37) becomes  

𝛾2𝜎 2 = 𝑔 (𝑘  𝑡𝑎𝑛ℎ𝑘 (ℎ +
𝐴

2
) −

𝑘2 𝐴

2
) ......(38) 

If wave amplitude is considered as a very small number, 

both to water depth and wave length, (38) becomes  

𝛾2𝜎 2 = 𝑔𝑘𝑡𝑎𝑛ℎ𝑘ℎ  ......(39) 

Then if𝛾 = 1is taken, (39) becomes 

𝜎 2 = 𝑔𝑘𝑡𝑎𝑛ℎ𝑘ℎ  ......(40) 

(40) is a dispersion equation of linear wave theory (Dean, 

1991).  

 

Dispersion equations (37), (38), (39) and (40) have not 

met wave number conservation equation. At (37) wave 

number conservation equation (18a) is performed, hence 

𝛾2𝜎 2(𝑘 − µ) = 𝑔𝑘 (𝑘 − (𝑘 − µ) (
𝑘𝐴

2
)) .....(41) 

(41) is used to calculate wave number at the deep water. 

The dispersion equation at the shallow water is obtained 

by substituting wave number conservation (15) that can 

be stated as  

𝑘 (ℎ +
𝐴

2
) = 𝑘0 (ℎ0 +

𝐴0

2
) 

Keeping in mind that𝑡𝑎𝑛ℎ𝑘0 (ℎ0 +
𝐴0

2
) =

1where𝑘0 (ℎ0 +
𝐴0

2
) = 𝜓𝜋 , this research used 𝜓 = 1.1, 

where𝑡𝑎𝑛ℎ (1.1𝜋) = 0.998009 ,  

𝑘 (ℎ +
𝐴

2
) = 𝜓𝜋  ,or

𝑘𝐴

2
= 𝜓𝜋 − 𝑘ℎ     ......(42) 

Substitute (42) to (41), 

𝛾2𝜎 2(𝑘 − µ) = 𝑔𝑘(𝑘 − (𝑘 − µ)(𝜓𝜋 − 𝑘ℎ) )...(43) 

This equation is dispersion equation at the shallow water. 

However,calculation with (43) should be performed 

consecutively from deep water depth.  To obtain deep 

water depth,𝑘0is calculated with (41), then deep water 

depth ℎ0is the deepest between 𝑘0 (ℎ0 +
𝐴0

2
) = 𝜓𝜋 and 

𝐴0

2ℎ0
≤ 0.10. For water depth more than ℎ0 the wave 

number conservation equation can’t be applied.  

 

4.4.Complete Dispersion Equation  

In this complete dispersion equation, the surface 

momentum equation is used completely and the wave 

number conservation equation is applied. The resulted 

equation  is for calculating wave number at the shallow 

water only. Substitute (42) to (29) the first 𝑓(𝑘, 𝐺) =

0equation is obtained.  

 

𝑓1
(𝑘, 𝐺) = 𝐺(𝑘 − (𝑘 − µ)(𝜓𝜋 − 𝑘ℎ)) 

𝑐𝑜𝑠ℎ𝑘 (ℎ +
𝐴

2
) − 𝛾𝜎𝐴 = 0 .....(44) 

The second equation is surface momentum equation, i.e.  
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𝑓2
(𝑘, 𝐺) = 𝛾

Ƌ𝑢𝜂

Ƌ𝑡
+ (

1

2

Ƌ

Ƌ𝑥
(𝑢𝜂

2 + 𝑤𝜂
2) + 𝑔

Ƌ𝜂

Ƌ𝑥
) = 0 

.....  (45) 

Where,  

𝛾
Ƌ𝑢𝜂

Ƌ𝑡
= 𝛾𝐺𝜎 (𝑘 − µ)𝑐𝑜𝑠ℎ𝑘 (ℎ +

𝐴

2
) ....(46a) 

𝑢𝜂

Ƌ𝑢𝜂

Ƌ𝑥
=

1

2
𝐺2𝑘2(𝑘 − µ)𝑐𝑜𝑠ℎ2 𝑘 (ℎ +

𝐴

2
) ....(46b) 

𝑤𝜂

Ƌ𝑤𝜂

Ƌ𝑥
= −

1

2
𝐺2𝑘2(𝑘 − µ)𝑠𝑖𝑛ℎ2 𝑘 (ℎ +

𝐴

2
)  ....(46c) 

𝑔
Ƌ𝜂

Ƌ𝑥
= −2𝑔(𝜓𝜋 − 𝑘ℎ)  ...(46d) 

At (46d) 𝑘𝐴is substituted with wave number conservation 

equation (42). Keep in mind that based on wave number 

conservation equation, 𝑐𝑜𝑠ℎ𝑘 (ℎ +
𝐴

2
)is constant number, 

i.e. 𝑐𝑜𝑠ℎ𝑘 (ℎ +
𝐴

2
) = 𝑐𝑜𝑠ℎ𝑘0 (ℎ0 +

𝐴0

2
), where𝑘0is 

calculated with (41) and deep water depth ℎ0is the 

deepest betweenℎ0 = (𝜓𝜋 −
𝑘0 𝐴0

2
)

1

𝑘0
and 

𝐴0

2ℎ0
≤ 0.10. The 

values of 𝑘and𝐺can be obtained by completing (35) and 

(36) with Newton-Rhapson method, with the inputs wave 

period, wave amplitude and water depth. 

 

V. THE ADJUSTMENT OF γ VALUE  

The value of 𝛾 = 3from the previous analysis is 

theoretical value based only on Laplace equation solution. 

In this part, the adjustment of 𝛾value will be done using 

observation on deep water wave height. The adjustment is 

done using the relation between deep water wave height 

and wave period from Silvester (1974) and from Wiegel 

(1949 and 1964).  

By ignoring bottom slope, then (41) which is a dispersion 

equation at deep water, becomes a quadratic equation for 

𝑘.  

𝛾2𝜎 2 = 𝑔𝑘 (1 − (
𝑘𝐴

2
))    .........(47) 

This equation has a solution if the determinant value is 

𝐷 ≥ 0, where 

𝐷 = 𝑔2 − 4 (
𝑔𝐴

2
) (𝛾2𝜎 2). 

For𝐷 = 0, 𝐴𝑚𝑎𝑥 =
𝑔

2𝛾2 𝜎2
With the value of𝐻𝑚𝑎𝑥 =

2𝐴𝑚𝑎𝑥 ,wave period is calculated from empirical 

equations of Silvester (1974), 𝑇𝑆𝑖𝑙 = √19.68𝐻1
3⁄ and 

Wiegel equation (1949 and 1964), 𝑇𝑊𝑖𝑒𝑔 = 15.6 (
𝐻𝑚

𝑔
)

0.5

 , 

𝐻𝑚 is maximum deep water wave height,𝑔is the force of 

gravity. As 𝐻1
3⁄ and𝐻𝑚,𝐻𝑚𝑎𝑥  is used. 

Table.3: Wave height maximum at deep water, at𝛾 =

2.483. 

𝑇 

(sec.) 

𝐻𝑚𝑎𝑥  

(m) 

𝑇𝑆𝑖𝑙  

(sec.) 

𝑇𝑊𝑖𝑒𝑔  

(sec.) 

𝐻𝑚𝑎𝑥

𝐿
 

6 1,45 5,34 6 0,32 

7 1,97 6,23 7 0,32 

8 2,58 7,12 8 0,32 

9 3,26 8,02 9 0,32 

10 4,03 8,91 10 0,32 

11 4,88 9,8 11 0,32 

12 5,8 10,69 12 0,32 

13 6,81 11,58 13 0,32 

14 7,9 12,47 14 0,32 

15 9,07 13,36 15 0,32 

 

The result of the calculation on Table (3) was done using 

the value of 𝛾 = 2.483 . Wavelength 𝐿 on Table (3) was 

calculated using (47) obtained that
𝐻𝑚𝑎𝑥

𝐿
for all reviewed 

wave period is 0.318 or
1

𝜋
, where it is in accordance with 

the analytical result ( Hutahaean (2019)) i.e. breaking 

occurs when
𝐻𝑏

𝐿𝑏
=

1

𝜋
, 𝐻𝑏 breaker height and𝐿𝑏 breaker 

length. Therefore 𝐻𝑚𝑎𝑥 on column 2 is deep water wave 

height maximum for wave period on column 1, where the 

wave period is similar to 𝑇𝑊𝑖𝑒𝑔 and is close enough to 

𝑇𝑆𝑖𝑙 that was calculated using 𝐻𝑚𝑎𝑥 on column 2. Therefore 

a conclusion can be made that the value of 𝛾 = 2.483is a 

quite good value, and the maximum deep water wave 

height 𝐻0for wave period on column 1 is on column 2. 

 

VI. EXAMPLE OF THE RESULT OF 

WAVELENGTH CALCULATION 

The example of the result of wavelength 𝐿calculation 

wave with wave period of 8 second, with𝐴0 = 0.6 m 

and
𝑑ℎ

𝑑𝑥
= −0.01 is shown on Fig.1., Fig 2. and Fig.3. 

 

Fig.1 shows the comparison between wavelength (40), 

(39), (38) and (43)  where it is seen that (40) as dispersion 

equation of linear wave theory produces wavelength that 

is much longer than the three comparing equations. 

Wavelength (39), (38) and (43) look close, but further 

information can be seen on Fig.2. 

 

 
Fig.1: Comparison between wavelength (40), (39), (38) 

and (43). 
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Fig.2: Wavelength (39), (38), (43) and (44+45) 

 

Fig. 2 shows the result of the calculation using (39), (38), 

(43) and (44+45). At shallow water, wavelength from 

(39) and (38) looks much bigger than from (43) and 

(44+45). Whereas at deep water, (38) produces 

wavelength similar to that of (43) and (44+45). This 

shows that wave number conservation has a major role in 

the transformation of wavelength at shallow water, where 

at (39) and (38) wave number conservation equation is 

not performed. In addition, the changes in wavelength 

from (43) and (44+45) look linear which shows that the 

changes in wavelength as a result of water depth changes 

is dominated by wave number conservation equation (15).  

Between (39) and (38), there is a relatively big difference, 

where at (39) there is no wave amplitude as its variable as 

it is with (38). This shows that the effect of wave 

amplitude on wavelength is shortening wavelength. To 

study the effect of wave amplitude on wavelength, (38) is 

performed with different wave amplitude, i.e. 0.30 m and 

0.60 m, with the result as presented on Fig. 3, which 

shows that wavelength from a wave with wave amplitude 

0.30 m is longer that wavelength of a wave with wave 

amplitude of 0.60 m.   

 

Fig.3: Wavelength (38) with different wave amplitude 𝐴 

 

 

VII. CONCLUSION 

This research concludes that at a space and time function, 

there is a time scale coefficient at total change or total 

acceleration. For a function 𝑓(𝑥, 𝑧, 𝑡)with the main 

direction of change at axis−𝑥 direction, the total 

acceleration coefficient has a value of 2.483. The 

application of total acceleration equation with time scale 

coefficient at wavelength analysis produces wavelength 

that fits with the one exists in the nature.  

There are 3 factors affecting wavelength, i.e. total 

acceleration equation, wave number conservation law and 

wave amplitude. However, the main factors are the first 

and the third factors. Total acceleration plays a role in 

determining wavelength as a whole i.e at deep water and 

shallow water, wave number conservation equation plays  

a role in the transformation of wavelength at the change 

of water depth at shallow water. With the presence of 

wave amplitude effect on wavelength, the correct 

wavelength analysis is if it is performed together with 

shoaling analysis.  

Convective acceleration term at the momentum equation 

is shortening wavelength although it is relatively small. 

For practical purposes dispersion equation formulated 

without taking into account convective acceleration can 

be used.  

Wavelength research with physical model has never been 

done before. Considering that the truth of a wave theory is 

also shown by the produced wavelength, therefore the 

availability of wavelength data as the result of physical 

model is highly needed.   
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