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Abstract— In this paper we extend a graph convolutional 

neural network (GCNNs) which is the one of the existing  

state-of-art deep learning methods using the notion of 

capsule networks for graph classification. Through 

experiments, we show that by extending GCNNs using 

capsule networks can significantly overcome the 

challenges of GCNNs for the task of graph classification. 
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I. INTRODUCTION 

Many real-world problems are represented as graphs, 

such as social networks, molecular graph structures, 

biological protein-protein networks, all of these domains 

and many more can be readily modeled as graphs, which 

capture interactions (i.e., edges) between individual 

units(i.e., nodes).  

In many of these problems, the input data is in the 

form of graphs, and the graph convolutional neural 

networks task is to do node classification and graph 

classification. Graph classification, or the problem of 

identification of class labels of graphs in a dataset, is an 

important problem with practical applications in a diverse 

set of fields. Data from bioinformatics [1], 

chemoinformatics [2], social network analysis[3], urban 

computing[4], and cyber-security [5] can all be naturally 

represented as labeled graphs. 

The standard graph convolutional neural networks 

model commonly used in existing deep learning 

approaches on graphs, especially when  it applied to the 

graph classification problem it face some limitations : 

 Loss of information due to the basic graph 

convolution operation. 

 Graph convolutional neural network model are 

equivariant because of this it cannot apply 

directly to graph classification problem, since it 

cannot provide any guarantee that the outputs of 

any two isomorphic graph graphs are always the 

same. 

 Graph convolutional neural networks model are 

limited to exploiting global information for the 

purpose of graph classification 

 

II. RELATED WORK 

Many different techniques have been proposed to 

solve the graph classification problem. One popular 

approach is to use a graphkernel to measure similarity 

between different graphs [6]. This similarity can be 

measured by considering various structural properties like 

the shortest paths between nodes [7], the occurrence of 

certain graphlets or subgraphs [8], and even the structure 

of the graph at different scales [9]. 

Recently, several new methods which generalize over 

previous approaches have been introduced. These 

methods use a deep learning framework to learn data-

driven representations of graphs [10, 11, 12]. In [10], a 

method is introduced that generalizes the Weisfeiler-

Lehman (WL) algorithm by learning to encode only 

relevant features from a node’sneighborhood during each 

iteration. Interestingly, [11] proposes a method that 

processes a section of the input graph using a 

convolutional neural network. However, for this to work 

for graphs of arbitrary sizes the method relies on a 

labeling step that ranks all the nodes in the graph which 

means it still processes the entire graph initially 

 

III. PROPOSED MODEL AND CONTRIBUTION 

The main contributions of our paper can be summarized 

as follows: 

1. Proposing a novel Graph Convolution neural 

network with Capsule Networks (GCNN-

CapsNet) model which is based on the capsule 

idea of capturing high information output in a 

small vector instead of scaler output which is 

current used on GCNN models. 
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2. Replacing the max pooling and node aggregation 

which is current methods used to achieve the 

graph permutation invariance by developing a 

novel graph permutation invariant layer which is 

based on computing the covariance of the data to 

solve graph classification problem.  

3. Designing GCNN-CapsNet which will exploit 

the global graph structure features at each graph 

node. 

 

3.1 Proposed model 

Our proposed model has Capsule networks as core idea 

behind is to capture more information in local node pool 

beyond what captured by max pooling and by 

aggregation, which graph convolution operation is used in 

a standard GCNN model. The new information is 

encapsulated in so called instantiation parameters 

described in [13] which form a capsule vector of highly 

informative output 

3.2 GCNN general model 

For the basic notations let consider a graph𝐺 =
(𝑉, 𝐸, 𝐴)of size 𝑁 = |𝑉| Where 𝑉  is the vertex set,𝐸 the 

edge set and 𝐴 = [𝑎𝑖𝑗] the weighted adjacency matrix. 

The standard graph Laplacian is defined by𝐿 = 𝐷 − 𝐴 ∈

 ℝ𝑁𝑥𝑁 , where 𝐷  is the degree matrix. Let𝑋 ∈  ℝ𝑁𝑥𝑑  be 

the node feature matrix, where𝑑 is the input dimension. 

Before describing our model GCNN-CapsNet let start by 

describing a general GCNN model. Let 𝐺 be a graph with 

graph Laplacian Land𝑋 ∈  ℝ𝑁𝑥𝑑   be a node feature 

matrix. then general form of a GCNN layer output 

function 𝑓(𝑋 , 𝐿) ∈  ℝ𝑁𝑥ℎ   given by 𝑓(𝑋, 𝐿) =

𝛿(∑ 𝐿𝐾𝐾
𝑘=0 𝑋𝑊𝐾

)  (1) 

Where 𝐿𝑘𝑋  is graph convolution filter of polynomial 

form with degree k. while 𝑊𝑘are learning weight 

parameters. 

3.3 Capsule graph function 

Capsule graph function is described by considering an 

𝑖𝑡ℎnode with𝑥0value and the set of its neighborhood node 

values as ( ) { 0, 1, 2..., }N i x x x xk  including itself. In 

the standard graph convolution operation, the output is a 

scalar functionℝ𝑘 →  ℝwhich take k input neighbors at 

the𝑖𝑡ℎ  node and yields an output given by  

 fi(x0, x1, x2, . . , xk) =
1

|N(i)|
∑ aik k∈N(i) xk   (2) 

Where 𝑎𝑖𝑘 represents edge between nodes 𝑖 and 𝑘 . 

Our capsule graph network, we 

replace𝑓(𝑥0, 𝑥1, … . , 𝑥𝑘)with a vector valued capsule 

function𝑓: ℝ𝑘 → ℝ𝑝. for example, consider a capsulea 

capsule function that capture higher order statistical 

moments as follows , we omit the mean and standard 

deviation for simplification 

 

 

𝑓𝑖(𝑥𝑜, 𝑥1, … , 𝑥𝑛) =
1

|𝑁(𝑖) |

[
 
 
 
 
 
 
 
 
 
 ∑ 𝑎𝑖𝑘𝑥𝑘 

𝑘∈𝑁(𝑖)

∑ 𝑎𝑖𝑘𝑥𝑘
2

𝑘∈𝑁(𝑖)
.
.
.
.

∑ 𝑎𝑖𝑘𝑥𝑘
𝑝

𝑘∈𝑁(𝑖) ]
 
 
 
 
 
 
 
 
 
 

(3) 

3.4 Graph Capsule Vector Dimension  

In the first layer of graph capsule network receives 

an input𝑋 ∈  ℝ𝑁∗𝑑 and produces a nonlinear output 

𝑓(𝑋, 𝐿) ∈  ℝ𝑁∗ℎ1∗𝑝 . since the graph capsule function 

produce a vector of 𝑝dimension,  the feature dimension of 

the output in subsequent layers can quickly blow up to an 

unmanageable value. For keeping checking, we restrict 

the feature dimension of the output 𝑓
(𝐿) (𝑋, 𝐿) to be 

always∈  ℝ𝑁∗ℎ1∗𝑝  at  any middle 𝑙𝑡ℎ layer of GCNN-

CapsNet. This was accomplished by flattening the last 

two dimension of𝑓(𝑋 ,𝐿) and carrying out graph 

convolution in usual way (for example see equation 4 for 

flattening). 

 

3.5 Graph Capsule function with statistical moments  

Considering higher-order statistical moments as 

instantiation parameters because they are permutation-ally 

invariant and can nicely be computed through matrix-

multiplication operations in a fast manner. To do this 

let𝑓𝑝 (𝑋, 𝐿)be the output matrix corresponding to𝑝𝑡ℎ  

dimension. Then we can compute𝑓𝑝
𝑙 (𝑋, 𝐿) containing 

statistical moments as instantiation parameters as follows  

𝑓𝑝
(𝑙) (𝑋,𝐿)

= 𝛿(∑ 𝐿𝑘(𝑓𝐹
(𝑙−1)

𝑘

𝑘=0

(𝑋, 𝐿)ʘ ……ʘ𝑓𝐹
(𝑙−1)

(𝑋, 𝐿))𝑊
𝑃𝐾 

(𝑙)
 (4) 

Where ʘ is a hadamard product. Here to keep the feature 

dimension in check from growing, we flatten the last two 

dimension of the input as 𝑓𝐹𝑙𝑎𝑡
(𝑙−1)(𝑋, 𝐿) ∈  ℝ𝑁 𝑥 ℎ𝑙  −1𝑝  

And perform usual graph convolution operation followed 

by a linear transformation with 𝑊
𝑝𝑘
(𝑙)

 ∈  ℝℎ𝑙 𝑥 ℎ𝑙  −1𝑝 as the 

learning weight parameter.  Where𝑝  is used to denote 

both the capsule dimension as well the order of statistic 

moments. 

 

3.6 Graph permutation invariant layer 

The permutation invariant feature in GCNN-

CapsNat model of computing the covariance 

of𝑓(𝑋, 𝐿)layer output is given as follows, 

𝐶(𝑓(𝑋 , 𝐿)) =
1

𝑁
(𝑓(𝑋 , 𝐿) − 𝜇)𝑇(𝑓(𝑋, 𝐿) − 𝜇)  (5) 

Here μ is the mean of of𝑓(𝑋 ,𝐿) output and𝐶(. )  is a 

covariance function. Since covariance function is 
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differentiable and does not depend upon the order of row 

elements, it can serve as permutation invariant layer in 

GCNN-CapsNet model. And it is also fast in computation 

due to a single matrix-multiplication operation. Here we 

flatten the last  two dimension of GCNN-CapsNet layer 

output of𝑓(𝑋 , 𝐿) ∈ ℝ𝑁𝑥ℎ𝑥𝑝 in order to compute the 

covariance. 

In addition, covariance provides much richer 

information about the data by including shapes, norms 

and angles (between node hidden features) information 

rather than just providing the mean of data. In fact in 

multivariate normal distribution, it is used as a statistical 

parameter to approximate the normal density and thus 

also reflects information about the data distribution. This 

particular property along with invariance has been 

exploited before in [14] for computing similarity between 

two set of vectors. One can also think about fitting 

multivariate normal distribution onof 𝑓(𝑋, 𝐿)   but it 

involves computing inverse of covariance matrix which is 

computationally expensive. 

Since each element of covariance matrix is invariant 

to node orders, we can flatten the symmetric covariance 

matrix 𝐶 ∈  ℝℎ𝑝 𝑥 ℎ𝑝 to construct the graph invariant 

feature vector𝑓 ∈  ℝ
(ℎ𝑝+1)ℎ𝑝/2  . other positive note , here 

the output dimension of 𝑓  does not depend upon𝑁  

number of nodes and can be adjusted according to 

computational constraints. 

It is quite straightforward to see that the feature 

dimension order of a node does not depend upon the 

graph node ordering and hence the order is same across 

all graphs. As a result, each element of 𝑓1 and 𝑓2 are 

always comparable. To be more specific, covariance 

output compares both the norms sand angles between the 

corresponding pairs of feature dimension vectors in two 

graphs. 

 

3.7 GCNN-CapsNet Global Features 

Another desired characteristic of graph classification 

problem is to capture global structure of graph. For 

instance, by considering only node degree (as a node 

feature) is a local information and is not much helpful 

towards solving graph classification problem. Also by 

considering spectral embedding as a node feature it takes 

global piece of information into account and has been 

proven successful in serving as a node vector for 

problems dealing with graph semi-supervised learning. 

We define a global feature that takes full graph structure 

into account during their computation. While local 

features only depend upon some k-hop node neighbors. 

Unluckily, the basic design of GCNN model can 

only capture local structure information of the graph at 

each node. 

Let 𝐺  be a graph with𝐿 ∈  ℝ𝑁∗𝑁  graph laplacian 

and𝑋 ∈ ℝ𝑁∗𝑑  node feature matrix. let𝑓
(𝑙) (𝑋, 𝐿)  be the 

output function of a 𝑙𝑡ℎ GCNN layer equipped with 

polynomial filters of degree𝑘. Then[𝑓
(𝑙) (𝑋,𝐿)]𝑖output at 

𝑖𝑡ℎ depends upon “only” on the input values of neighbors 

distant at most “kl-hops” away. 

 

Mathematical we can proof the above statement, it is 

easy to see that the base case𝑙 = 1  holds true. Let’s 

assume it also holds true for 𝑓
(𝑙−1)

(𝑋, 𝐿) i.e., 𝑖𝑡ℎ  node 

output depends upon neighbors distant up to𝑘 𝑥 (𝑙 − 1) 

hop away. Then in  

𝑓
(𝑙) (𝑋, 𝐿) = 𝛿(𝑔(𝑓

(𝑙−1)(𝑋, 𝐿), 𝐿)𝑊(𝑙) 

We focus on term, 

𝑔(𝑋 , 𝐿) = [𝑓
(𝑙−1)(𝑋, 𝐿), … , 𝐿𝑘𝑓

(𝑙−1)(𝑋, 𝐿)  (6) 

Particularly the last term involving 𝐿𝑘𝑓
(𝑙−1)(𝑋, 𝐿). Matrix 

multiplication of 𝐿𝑘 with 𝑓
(𝑙−1)(𝑋, 𝐿) will result in 𝑖𝑡ℎ  

node to include all node information which are at most k-

hop distance away. But since a node in 𝑓
(𝑙−1)(𝑋, 𝐿) at a 

distance𝑘 𝑥 (𝑙 − 1)  hops, we have 𝑖𝑡ℎ  node containing 

information at most 𝑘 + 𝑘(𝑙 − 1) = 𝑘𝑙  hops distance 

away. 

GCNN model with l layers can capture only kl-hop 

local-hood structure information at each node. Thus 

employing GCNN for graph classification with say 

aggregation layer can capture only average variation of 

kl-hop local-hood information over the whole graph. To 

include more global information about the graph one can 

either increase 𝑘 (i.e, choose higher order graph 

convolution filter) or 𝑙 (i.e, the depth of GCNN model). 

Both these choice make the model complex and require 

more data sample to reach satisfying result. However 

among the two, we prefer increasing the depth of GCNN 

model because the first choice leads to increase in the 

breadth of GCNN layer and based on the current 

understanding of deep learning theory, increasing the 

depth is favored more over the breadth. 

For cases where graph node features are missing, 

like social network datasets, it is a common practice to 

take node degree as a node feature. Such practice can 

work for the problems like graph semi-supervised where 

local structure information drives node output labels (or 

classes). But in graph classification global features 

governs the output labels and hence taking node degree is 

not sufficient. Of course, we can go for a very deep 

GCNN model that requires higher sample complexity to 

achieve satisfying results. 

We propose to incorporate FGSD features in our 

GCNN-CapsNet model computed at each node. FGSD 

features capture global information about the graph and 

can also be computed in fast manner. Specifically, at each 

𝑖𝑡ℎ   node FGSD features are computed as histogram of 
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the multi-set formed by taking the harmonic distance 

between all nodes and the 𝑖𝑡ℎ  node. It is given by, 

𝑆(𝑥, 𝑦) =  ∑
1

𝜆𝑛

𝑁−1

𝑛=0

(∅𝑛(𝑥) − ∅𝑛(𝑦))2  (7) 

Where 𝑆(𝑥, 𝑦)  is the harmonic distance,𝑥, 𝑦  are any 

graph node and 𝜆𝑛, ∅𝑛(. ) is the 𝑛𝑡ℎeigenvalue and 

eigenvector respectively. 

Our experiment, we employ these features only for 

datasets where node feature are miss ing. Although this 

strategy can always be used by concatenating FGSD 

features with original node feature values to capture more 

global information. Finally our whole end to end GCNN-

CapsNet learning model is guaranteed to produce the 

same output for isomorphic graphs 

 

IV. GCNN-CAPSNET MODEL CONFIGURATION 

 

Here  GC(h,p) is a graph capsule CNN layer with h 

hidden dimensions and p instantiation parameters. As 

mentioned earlier, we take the intermediate tensor  which 

is subsequently pass through [M,C(.)] layer which 

computes means and covariance of the input. Output of 

[M,C(.)] layer is the passed to two fully connected FC 

layers with h output dimensions and finally connect  to a 

softmax layer for computing calss probabilities.  

 

4.1 Dataset 

Evaluating the GCNN-CapsNet model we perform 

graph classification task on variety of benchmark 

datasets. In first round we used bioinformatics datasets 

namely: PROTEINS, NCI109,NCI1 and ENZYMES. In 

the second round we used social netrork datasets namely: 

COLLAB,IMDB-BINARY,REDDIT-BINARY and 

REDDIT-MULTI5K.  

 

4.2 Experimental setup 

All experiments were performed on a single machine 

loaded with 2xNVIDIA TITAN VOLTA GPUs and 64 

GB RAM. And we compare our method with both deep 

learning models and graph kernels. 

For deep learning approaches, we adopted 3 recently 

proposed state-of-art graph convolutional neural network 

namely: PATCHYSAN (PSCN)[15],Diffusion 

CNNs(DCNN)[16], Dynamic Edge CNN(ECC)[17]. 

For graph kernel we adopted 4 state-of-art graphs kernels 

for comparison namely: Random Walk(RW) [18], 

Shortest Path Kernel(SP)[19] , Graphlet kernel (GK)[20], 

Weisfeiler-Lehman Sub-tree Kernels(WL) 

 

4.3 Graph Classification Results  

From table 1, it is clear that our GCNN-CapsNet 

model consistently outperforms most of the considered 

deep learning methods on bioinformatics datasets with a 

significant margin of 1% -6%  classification accuracy gain 

on NCI1 datasets. Again ,this trend is continued to be the 

same on social network datasets as shown in Table2. Here 

we were able to achieve up to 4%  accuracy gain on 

COLLAB dataset and rest were around 1%  gain with 

consistency when compared against other deep learning 

approaches. 

Our GCNN-CapsNet is also very competitive with 

state-of-art graph kernel methods. It again show a 

consistent performance gain of 1% -3% accuracy on many 

bioinformatics datasets when compared against with 

strong graph kernels. While other considered deep 

learning methods are not even close enough to beat graph 

kernels on many of these datasets. It is worth mentioning 

that the most deep learning models are also scalable while 

graph kernels are more fine-tuned towards handling small 

graphs. 

For social network datasets, we have a significant 

gain of at least 4% -9%  accuracy(highest being on 

REDDIT-MULTI dataset) against graph kernels as 

observed in Table 2. But this is expected as deep learning 

methods tend to do better with the large amount of data 

available for training on social network datasets. 

Altogether, our GCNN-CapsNetmodel shows very 

promising result against both the current state-of-art deep 

learning methods and graph kernels. 

 

Dataset PROTEINS NCI109 NCI1 ENZYMES 

No.Graphs 1113 4127 4110 600 

Max.Graph Size 620 111 111 126 

Avg.Graph Size 39.80 29.60 29.80 32.60 
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Deep Learning Methods 

PSCN[2016] 75.00±2.51 - 76.34±1.68 - 

DCNN[2016] 61.29±1.60 57.47±1.22 56.61±1.04 42.44±1.76 

ECC[2017] - 75.03 76.82 45.67 

GCNN-CapsNet 76.40±4.17 81.12±1.28 82.72±2.38 61.83±5.39 

 

Graph Kernels 

RW[2003] 74.22±0.42 >73.00±0.21 >1Day 24.16±1.64 

SP[2005] 75.07±0.54 73.00±0.21 73.00±0.24 40.10±1.50 

GK[2009] 71.67±0.55 62.60±0.19 62.28±0.29 26.61±0.99 

WL[2011] 74.68±0.49 82.46±0.24 82.19±0.18 52.22±1.26 

GCNN-CapsNet 76.40±4.17 81.12±1.28 82.72±2.38 61.83±5.39 

 

Table 1.Classification accuracy on bioinformatics datasets. Result in bold indicates the best reported classification accuracy.  

Top table compares results with various deep learning approaches while bottom half  compares results with graph kernels. 

‘>1day’ represent that the computation exceed more than 24hrs  

 

Dataset COLLAB IMDB-BINARY REDDIT-BINARY REDDIT-MULTI5K 

No.Graphs 5000 1000 2000 5000 

Max.Graph Size 492 136 3783 3783 

Avg.Graph Size 74.49 19.77 429.61 508.5 

 

Deep Learning Methods 

PSCN[2016] 72.60±2.15 71.00±2.20 86.30±1.58 49.10±0.70 

DCNN[2016] 52.11±0.71 49.06±1.37 OMR OMR 

GCNN-CapsNet 77.71±2.51 71.69±3.40 87.61±2.51 50.10±1.72 

 

Graph Kernels 

GK[2009] 72.84±0.28 65.87±0.98 77.34±0.18 41.01±0.17 

GCNN-CapsNet 77.71±2.51 71.69±3.40 87.61±2.51 50.10±1.72 

Table 2.Classification accuracy on social network datasets. Result in boldindicates the best reported classification 

accuracy.Top table compares results with various deep learning approaches while bottom half compares results with graph 

kernels. ‘>1day’ represent that the computation exceed more than 24hrs. ‘OMR’ is out of memory error. 

 

V. CONCLUSION 

In this paper, we present a novel Graph convolutional 

neural network with capsule network (GCNN-CapsNet) 

model based on the fundamental capsule idea to address 

some of the basic weaknesses of existing GCNN models.  

Our GCNN-CapsNet model design captures more local 

structure information than traditional GCNN and can 

provide much richer representation of individual graph 

nodes or for the whole graph. For our purpose we employ 

a capsule function that preserves statistical moment’s  

formation since they are faster to compute. 

We propose a novel permutation invariant layer 

based on computing covariance in our GCNN-CapsNet 

architecture to deal with graph classification problem 

which most GCNN models find challenging. This 

covariance can again be computed in a fast manner and 

has shown to be better than adopting aggregation or max 

pooling layer. We also propose to equip our GCNN-

CapsNet model with FGSD features explicitly to capture 

more global information in absence of node features. We 

finally show GCNN-CapsNet superior performance on 

many bioinformatics and social network datasets in 

comparison with existing deep learning methods as well 

as strong graph kernels and set the current state-of-art. 
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