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Abstract—There is a consensus that cooperative 

communication is a key technology for the upcoming 

generations of mobile communications. Whether under 

the Coordinated Multipoint (CoMP), Device-to-Device 

(D2D) communication or Internet of Things (IoT) scopes, 

there is little doubt that a more decentralized network, 

where several communicating agents smartly cooperate 

to improve data rate and reliability, is fundamental to 

cope with the always scarce resources of energy and 

bandwidth. When relaying stations are deployed to 

increase signal coverage and to provide cooperative 

diversity, the concatenation of two or more point-to-point 

MIMO channels impose a restriction on conventional 

algorithms for channel estimation. Although single-relay, 

two-hop Amplify-and-Forward (AF) systems have been 

reasonably investigated, there are enough evidences that 

more transmission hops will be a common scenario in the 

next years. This work proposes a semi-blind receiver for 

the task of joint symbol and channel estimation in a three-

hop AF MIMO system. Resorting to a Nested PARAFAC 

tensor model, new  estimating equations were derived, 

along studies on the uniqueness and identifiability 

conditions concerning the aforementioned receiver. 

Simulations corroborate the validity of the receiver as an 

effective option. 

Keywords—Amplify-and-Forward , Cooperative 

communications, Relaying, Tensor decomposition. 

 

I. INTRODUCTION 

In wireless communications, relay stations 

havebeen extensively deployed to increase the signal 

coverage in a broadcast transmission [15]. In recent years, 

relaying also has been used to provide digital receivers 

with what is called cooperative diversity, where a relay 

might work with single-antenna transmitters to emulate a 

virtual array of antennas. In this sense, the benefits of 

spatial transmit diversity could be obtained without a 

increase of the number of transmit antennas.  

The simplest of the relaying protocols is called 

Amplify-and-Forward (AF) As its name suggests, the 

incoming signals are amplified, and then forwarded to the 

intended destination. The main advantage of this non-

regenerative process is that no complex decodingis 

performed at the relay, so its hardware and software 

complexities arereduced with comparison to the so-called 

regenerative protocols, such as the Decode-and-Forward 

(DF), favoring its mass implementation [15-16]. As a 

drawback, due to its simple operation, noise and 

interference are also amplified, limiting the benefits of 

relaying. 

Another disadvantage of the AF protocol is 

related to the task of channel estimation. Besides the 

usual need of the Channel State Information (CSI) for 

symbol detection, many system optimization techniques 

demand the knowledge of the various channels that 

compose a relaying network [1, 8-10]. The absence of a 

powerful processing unit at the relay leaves all this work 

to the destination node, which is usually inapt to 

dissociate the cascaded source-relay and relay-destination 

channels under conventional transmission protocols. 

The issue of channel estimation in two-hop AF 

MIMO systems have been addressed in few state-of-the-

art works [5-7,14] by using training sequences and by 

[11, 12] in a semi-blind fashion. However, when it comes 

to the multi-hop systems, with more than one serial relay 

in the communication link, there is  usually a lack of 

related works. This is particularly concerning since the 

future of wireless communications points towards ever 

more decentralized networks, such as Device-to-Device 

(D2D) communications technologies, where longer chains 

of connected relaying devices can be expected. For a 

three-hop (two relays) link, [2] have resorted to the 

combination of PARAFAC and Tucker tensor models to 

estimate the channel. However, [2] resorts once again to 

the use of pilot symbols, disregarding the benefits of the 

joint estimation of symbols and channels.In [18] the 

authors generalized the works of [11,12] for any number 

of hops. 

This work proposes a three-hop AF MIMO 

system, where both relays and the source node applies a 

Khatri-Rao Space-Time (KRST) coding over the signals 

prior to their transmission. In this way, the receiver can 

arrange the signals into a 5𝑡ℎ -order tensor following a 

Nested PARAFAC model, from which the three-hop 
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channels and symbols can be estimated by a closed-form 

algorithm. Notably, this proposed tensor model is an 

expansion of the 4𝑡ℎ -order model ,holding similar 

properties/advantages. Studies on the uniqueness of the 

proposed model and and on identifiability conditions for 

the proposed receiver are also carried out, along the 

presentation of its computational complexity and 

performance in terms of Bit Error Rate (BER) and 

channel Normalized Mean Square Error (NMSE). 

 The main contributions are:   

    1.  Derivation of new unfolded equations for 

the three-hop system, for both signals and noise terms;  

    2.  Proposal of a theorem on the essential 

uniqueness of the system model;  

3.  Discussion on the computational complexity 

and on the achievable spectral efficiency of the proposed 

method.  

 

1.1 Notations and fundamentals of tensors  

 Scalars, column vectors, matrices, and tensors 

are denoted by lower-case (𝑥), boldface lower-case (𝐱), 

boldface capital (𝐗), and calligraphic (𝒳) letters, 

respectively. 𝐗𝑇, 𝐗∗, 𝐗†, 𝐗𝑙⋅  and 𝐗 ⋅𝑚 are the transpose, 

the conjugate, the pseudoinverse, the 𝑙𝑡ℎ row, and the 𝑚𝑡ℎ  

column of 𝐗 ∈ ℂ𝐿×𝑀 , respectively. 𝐷𝑛(𝐗) stands for the 

diagonal matrix formed from the elements of 𝐗𝑛⋅. Given a 

third-order tensor 𝒳 ∈ ℂ𝐼×𝐽×𝐾 , with entry 𝑥 𝑖,𝑗,𝑘 , the 

matrices 𝐗𝐽𝐾 ×𝐼, 𝐗𝐾𝐼×𝐽 and 𝐗𝐼𝐽×𝐾 denote tall mode-1, 

mode-2 and mode-3 unfoldings, with 𝑥 𝑖,𝑗 ,𝑘 =

[𝐗𝐽𝐾×𝐼 ]
(𝑘−1)𝐽+𝑗,𝑖

= [𝐗𝐾𝐼×𝐽]
(𝑖−1)𝐾+𝑘,𝑗

= [𝐗𝐼𝐽×𝐾]
(𝑗−1)𝐼+𝑖,𝑘

. 

The vec(.) and unvec(.) operators are defined by  

𝐱𝐽𝐾𝐼 = vec(𝐗𝐽𝐾×𝐼 ) ∈ ℂ𝐽𝐾𝐼 ×1 

↔ 𝐗𝐽𝐾×𝐼 = unvec(𝐱𝐽𝐾𝐼 ). 

1.2 PARAFAC and Nested PARAFAC 

decompositions 

 

A PARAFAC decomposition [4,13] of a third-

order tensor 𝒳 ∈ ℂ𝐼×𝐽×𝐾, with rank-𝑅 and matrix factors 

(𝐀, 𝐁, 𝐂), will be noted ⟦𝐀, 𝐁, 𝐂; 𝑅⟧  . Tall and flat mode-1 

matrix unfoldings of 𝒳 are respectively given by  

𝐗𝐽𝐾 ×𝐼 = (𝐂 ⋄ 𝐁)𝐀𝑇 = (𝐗𝐼×𝐽𝐾 )
𝑇

, (1) 

 where ⋄ denotes the Khatri-Rao product. Similar mode-2 

and mode-3 unfoldings can be obtained by permuting the 

factor matrices. 

A 4𝑡ℎ  Nested PARAFAC model [17,18] can be 

seen as a generalized model w.r.t.the PARAFAC. In this 

model a 4𝑡ℎ -order tensor can be reduced to two3𝑟𝑑-order 

tensors that follows a PARAFAC model, by associating 

two of their original modes into a single one. The matrix 

factors related to the associated modes are  

𝒳 = ⟦𝐀, 𝐁, 𝐂; 𝑅1
⟧, (2) 

𝒞 = ⟦𝐃, 𝐄, 𝐅; 𝑅2
⟧. (3) 

 where 𝐂 can be any matrix unfolding of 𝒞.Note that 𝐂 in 

(2) is any unfolded form of 𝒞 represented in (3). 

 

II. THREE-HOP SYSTEM 

A one-way three-hop relay system is depicted in 

Fig. 1. The source (𝑆) node wants to transmit its signal to 

the destination (𝐷) node with the aid of unidirectional 

relays 𝑅1 and 𝑅2. The communication channels 𝐇 (𝑆𝑅1) ∈

ℂ𝑀1 ×𝑀𝑆 , 𝐇 (𝑅1𝑅2) ∈ ℂ𝑀2 ×𝑀1  and 𝐇 (𝑅2𝐷) ∈ ℂ𝑀𝐷 ×𝑀2  are 

considered to flat-fading and time-invariant during a 

transmission block 

 
Fig.1: Three-hop one-way communication 

 

Prior to the transmisstion, the source node 

applies a Khatri-Rao Space-Time (KRST) coding on its 

symbol matrix 𝐒 ∈ ℂ𝑁 ×𝑀𝑆  using the code matrix 𝐂 𝑃×𝑀𝑆 . 

Just like in , 𝑁 is the data-stream (number of symbol 

vectors) and 𝑃 is the spreading source code length. Thus, 

in the first hop of Fig.1, the signals transmitted from 𝑆 to 

𝑅1 become  

𝐖𝑀1×𝑃𝑁
(𝑅1)

= 𝐇 (𝑆𝑅1) (𝐒 ⋄ 𝐂)𝑇 . (4) 

 In the second hop, 𝑅1 applies the Khatri-Rao ST coding 

over 𝐽, and 𝑅1 transmits its signal to 𝑅2. The signals 

arriving at this second relay are  

𝐖𝑀2 ×𝐽𝑃𝑁
(𝑅2)

= 𝐇 (𝑅1𝑅2) (𝐖𝑃𝑁×𝑀1

(𝑅1)
⋄ 𝐆 (𝑅1) )

𝑇
. (5) 

Equation (5) is intentionally written in the form 

of (4), such that there is a correspondence between the 

matrices that compose both signal models. For one, 𝐆 (𝑅1) 

has equivalent role of 𝐂 on the 𝑅1’s side, while 𝐖𝑃𝑁×𝑀1

(𝑅1)
 

and 𝐒 represent the signals prior to the ST coding at the 

first relay and at source, respectively. The entris of 

𝐖𝑀2 ×𝐽𝑃𝑁
(𝑅2)

 could be stored in the 4𝑡ℎ -order tensor 𝒲 (𝑅2) ∈

ℂ𝑀2 ×𝐽×𝑃×𝑁  such as  

𝑤𝑚2 ,𝑗,𝑝,𝑛
(𝑅2)

= ∑𝑀1
𝑚1 =1 ℎ𝑚2 ,𝑚1

(𝑅1𝑅2)
𝑔𝑗 ,𝑚1

(𝑅1) ∑𝑀𝑆
𝑚𝑆 =1 ℎ𝑚1 ,𝑚𝑆

(𝑆𝑅1 )
𝑐𝑝,𝑚𝑆

𝑠𝑛,𝑚𝑆
 (6) 

 that follows a Nested PARAFAC decomposition 

However, without needing to store the data, 𝑅2 forwards 

the signals to the destination node (last hop of Fig. 1). 

Before the forwarding process by 𝑅2, this relay 

applies a new orthogonal KRST coding (similarly to (4) 

and (5)) with a code length 𝐾, such that after the 

transmission through 𝐇 (𝑅2𝐷)  we have  

𝐗𝑀𝐷 ×𝐾𝐽𝑃𝑁 = 𝐇 (𝑅2𝐷) (𝐖𝐽𝑃𝑁 ×𝑀2

(𝑅2)
⋄ 𝐆 (𝑅2) )

𝑇
. (7) 

https://dx.doi.org/10.22161/ijaers.6.1.17
http://www.ijaers.com/


International Journal of Advanced Engineering Research and Science (IJAERS)                                 [Vol-6, Issue-1, Jan- 2019] 

https://dx.doi.org/10.22161/ijaers.6.1.17                                                                                  ISSN: 2349-6495(P) | 2456-1908(O) 

www.ijaers.com                                                                                                                                                                            Page | 125  

Due to the third hop (third KRST coding), with 

the addition of the dimension of length 𝐾, the signals 

arriving at the destination node can be arranged in a 5𝑡ℎ -

order tensor 𝐗 ∈ ℂ𝑀𝐷×𝐾×𝐽×𝑃×𝑁. Using (6), the scalar form 

of this tensor can be given by  

𝑥𝑚𝐷,𝑘,𝑗,𝑝,𝑛 = ∑

𝑀2

𝑚2 =1

ℎ𝑚𝐷 ,𝑚2

(𝑅2𝐷)
𝑔𝑘,𝑚2

(𝑅2)
𝑤𝑚2,𝑗 ,𝑝,𝑛

(𝑅2)
 

 = ∑𝑀2
𝑚2 =1 ℎ𝑚𝐷 ,𝑚2

(𝑅2𝐷)
𝑔𝑘 ,𝑚2

(𝑅2)
 

     × ∑𝑀1
𝑚1 =1 ℎ𝑚2 ,𝑚1

(𝑅1𝑅2)
𝑔𝑗 ,𝑚1

(𝑅1)
 

         × ∑𝑀𝑆
𝑚𝑆 =1 ℎ𝑚1,𝑚𝑆

(𝑆𝑅1)
𝑐𝑝,𝑚𝑆

𝑠𝑛,𝑚𝑆
. (8) 

Contrasting (8) with (6), the nesting nature of the 

Nested PARAFAC is kept at a higher-order due to the 

sequential KRST coding at each relay station. For the 4𝑡ℎ  

order model, the data can be processed directly from the 

4𝑡ℎ -way tensor or through the two nested 3𝑡ℎ -order 

tensors, being the latter the best in terms of computational 

burden. Among different forms of processing the 

(received) 5𝑡ℎ -order tensor described (8), the data can be 

arranged to conform to three PARAFAC models, 

𝒳 (𝑍) ℂ𝑀𝐷𝐾𝐽 ×𝑃 ×𝑁 , 𝒵(𝑅2) ∈ ℂ𝑀𝐷 𝐾×𝐽×𝑀𝑆  and 𝒵(𝑅1) ∈

ℂ𝑀𝐷 ×𝐾×𝑀1 , i.e.  

𝒳 (𝑍) = ⟦𝐙𝑀𝐷𝐾𝐽 ×𝑀𝑆

(𝑅2)
, 𝐂,𝐒; 𝑀𝑆⟧, (9) 

𝒵 (𝑅2) = ⟦𝐙𝑀𝐷𝐾×𝑀1

(𝑅1)
,𝐆 (𝑅1) , (𝐇 (𝑆𝑅1) )

𝑇
;𝑀1 ⟧, (10) 

𝒵 (𝑅1) = ⟦𝐇 (𝑅2𝐷) ,𝐆 (𝑅2) , (𝐇 (𝑅1𝑅2) )
𝑇

; 𝑀2⟧, (11) 

 where 𝒳 (𝑍) is obtained through the order reduction of 𝒳 

by associating its three first indices . The predilection for 

working with 3  these 3𝑟𝑑-order tensors rather than 

directly with5𝑡ℎ -order tensorcomes from the fact that 

established tools and theorems dedicated to third-order 

PARAFAC models are well-established and could be 

more easily applied. 

 

2.1 Noise terms 

The additive noise terms on relays 𝑅1 and 𝑅2 can 

be respectively given by 

𝐕𝑀2 ×𝐽𝑃𝑁
(𝑅2)

= 𝐇 (𝑅1𝑅2)(𝐕𝑀2 ×𝑃𝑁
(𝑅1)

⋄ 𝐆 (𝑅1) )
𝑇
, 

𝐕𝑀𝐷×𝐾𝐽𝑃𝑁
(𝑅𝐷)

= 𝐇 (𝑅2𝐷) (𝐕𝑀2×𝐽𝑃𝑁
(𝑅2)

⋄ 𝐆 (𝑅2) )
𝑇

. 

These forms follow the same unfolding order of 

(5) and (7). The matrices 𝐕𝑀2 ×𝑃𝑁
(𝑅1)

, 𝐕𝑀2 ×𝐽𝑃𝑁
(𝑅2)

 and 𝐕𝑀𝐷×𝐾𝐽𝑃𝑁
(𝑅𝐷)

 

are unfolded forms of the noise tensors V (𝑅1) ∈

ℂ𝑀1 ×𝑃×𝑁 , V (𝑅2) ∈ ℂ𝑀2 ×𝐽×𝑃×𝑁and V (D) ∈ ℂ𝑀D ×𝐾×𝐽×𝑃 ×𝑁 , 

that affect the inputs of 𝑅1, 𝑅2 and of the node D, 

respectively. 

Note that V (𝑅2) and 𝐕𝑀𝐷 ×𝐾𝐽𝑃𝑁
(𝑅𝐷)

 also follow Nested 

PARAFAC decompositions, and thus, its matrix factors, 

such as the channel and code matrices,  might be uniquely 

identified. That is a interesting approach, as it would not 

require symbol transmission for the task of CSI retrieval.  

 

III. TRIPLE KRF (TKRF) SEMI-BLIND RECEIVER 

The objective of the semi-blind receiver installed 

at the destination is not only to decode the symbols 

transmitted by the source, but also to jointly estimate all 

channels of the 3-hop link. The use of the 4𝑡ℎ -order 

Nested PARAFAC decomposition employed by [?, 12] 

enabled the development of 3 semi-blind receivers in 

total, although others could have been presented for the 

same mdodel. Perhaps the most interesting of those 

receivers is the one called DKRF, composed by two non-

iterative, sequential Khatri-Rao Factorizations (KRF), 

which presented the same performance as the others, but 

with less computational complexity . The same idea can 

be extended from the two-hop system to the three-hop one 

by adding up a third KRF factorization. 

Let one write the mode-2 unfoldings of the 

tensors 𝒳 (𝑍), 𝒵(𝑅2)  and 𝒵(𝑅1)  respectively as  

𝐗𝑁𝑀𝐷 𝐾𝐽×𝑃 = (𝐙𝑀𝐷 𝐾𝐽×𝑀𝑆

(𝑅2)
⋄ 𝐒)𝐂 𝑇 , (12) 

𝐙𝑀𝑆 𝑀𝐷𝐾×𝐽
(𝑅2)

= (𝐙𝑀𝐷𝐾×𝑀1

(𝑅1)
⋄ (𝐇 (𝑆𝑅1) )𝑇 )(𝐆(𝑅1) )

𝑇
,  (13) 

𝐙𝑀1 𝑀𝐷×𝐾
(𝑅1)

= (𝐇 (𝑅2𝐷) ⋄ (𝐇 (𝑅1𝑅2) )𝑇 )(𝐆(𝑅2) )
𝑇

. (14) 

The basic KRF factorization consists of 

reshaping each column of a Khatri-Rao product into a 

matrix, and then approximating such rank-one matrix as 

the outer product of two column vectors . The KRF 

algorithm is in Alg. 2 

Here we admit the principle that the estimation 

of the symbols is indispensable, while the estimation of 

the channel is optional. This makes the TKRF receiver 

more flexible, since some of the steps for the estimation 

of individual channels can be neglected, resulting in the 

reduction of the global complexity and a relaxation of the 

identifiability conditions. The three (sequential) KRF of 

the TKRF receiver are called KRF-1, KRF-2 and KRF-3, 

and they basically differ in the inputs and outputs. The 

fluxogram of the TKRF receiver is shown in the Fig. 2, 

and the description of its inputs and outputs are given by:   

 KRF-1: Symbol estimation (mandatory) 

o Inputs: 𝐗𝑁𝑀𝐷𝐾𝐽 ×𝑃  and 𝐂;  

o Outputs: (𝐙𝑀𝐷 𝐾𝐽×𝑀𝑆

(𝑅2)
, 𝐒)  

 KRF-2 (optional) 

o Inputs: (𝐙𝑀𝑆 𝑀𝐷 𝐾×𝐽
(𝑅2)

, 𝐆 (𝑅1) );  

o Outputs: (𝐙𝑀𝐷 𝐾×𝑀1

(𝑅1)
, 𝐇 (𝑆𝑅1))  

 KRF-3 (optional) 

o Inputs: (𝐙𝑀1 𝑀𝐷×𝐾
(𝑅1)

, 𝐆 (𝑅2));  

o Outputs: (𝐇 (𝑅2𝐷) ,𝐇 (𝑅1𝑅2))  
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Fig.2: TKRF algorithm 

 

3.1 Identifiability and Uniqueness Conditions  

In this section, identifiability and uniqueness 

conditions are derived to the case where all matrices 

(symbols and channels) are to be estimated. 

Theorem 1 (Identifibiality) Let the source code 

matrix 𝑪 and the relay code matrices 𝑮(𝑅1) and 𝑮(𝑅2) 

have full-rank. Necessary and sufficient identifiability 

condition to jointly estimate symbol (𝑺) and channel 

(𝑯(𝑆𝑅1), 𝑯(𝑅1𝑅2) and 𝑯(𝑅2𝑆)) matrices are that  

𝑃 ≥ 𝑀𝑆 ,    𝐽 ≥ 𝑀1 and    𝐾 ≥ 𝑀2 . (15) 

Proof. From the KRF algoritm (Alg. 2(c)@), the 

necessary (and only) condition to apply the column 

factorization is that 𝐆𝑇 (𝐆𝑇 )† = 𝐈𝑅. For the existence of 

the right inverse of 𝐆𝑇 , if 𝐆 is full-rank, then it is 

necessary that 𝐆 be also full column-rank. Once the 

TKRF receiver calls the KRF algorithm three times (i.e. 

KRF-1, KRF-2 and KRF-3), using one of three different 

correspondences at a time, i.e. 𝐆 ⇔ (𝐂, 𝐆 (𝑅1) ,𝐆 (𝑅2) ), then 

the necessary and sufficient identifiability condition, 

given that all code matrices are full-rank by Theorem 1, is 

simply (15).  

Theorem 2 (Uniqueness) Assume the following 

hypotheses: (a) the entries of the channel matrices are 

drawn from stochastic processes with continuous 

Gaussian distribution; (b) the identifiability hypotheses 

and conditions from Theorem 1 are met; (c) Symbol 

matrix is composed of random symbols, and the number 

of data-stream 𝑁 is much greater than the number of 

source antennas 𝑀𝑆 . Under such hypotheses, a sufficient 

but not necessary condition to ensure with very high 

probability the uniqueness solution at the output of the 

TRKF receiver is  

𝑚𝑖𝑛 (𝑀𝐷 , 𝑀𝑆 , 𝑀1, 𝑀2 ) ≥ |𝑀2 − 𝑀1| + 2. (16) 

Proof. Model equations (10) and (11) belongs to 

a 4𝑡ℎ -order Nested PARAFAC decomposition of the data 

fully stored in 𝒵(𝑅2) , so by using Theorem 2 from [12] 

with due correspondences, it is possible to ensure the 

essential uniqueness of matrix factors in (10) and (11) if 

the entries of 𝐇 (𝑅1,𝑅2) are drawn from a continous 

Gaussian distribution. Once this is the case, as stated by 

the hypotheses of Theorem 2 in this paper, then from [12] 

the uniqueness of the estimates of 𝐇 (𝑆𝑅1), 𝐇 (𝑅1𝑅2) and 

𝐇 (𝑅2𝑆) are guaranteed if  

𝑘𝐆 (𝑅1) + 𝑘
(𝐇(𝑆𝑅1))

𝑇 ≥ max(2𝑀1 − 𝑀2 , 𝑀2) + 2, (17) 

𝑘𝐆 (𝑅2) + 𝑘𝐇(𝑅2𝐷) ≥ max(2𝑀2 − 𝑀1, 𝑀1) + 2, (18) 

 where 𝑘𝐀 is the Kruskal rank of 𝐀 . 

Once 𝐆 (𝑅1) and 𝐆 (𝑅2) are full column-rank to 

satisfy the identifiability condition of Theorem 1, then 

𝑘𝐆 (𝑅1) = 𝑀1 and 𝑘𝐆 (𝑅2) = 𝑀2. Given the hypothesis on 

the channels, we have that 𝑘
(𝐇(𝑆𝑅1))

𝑇 = min(𝑀𝑆 , 𝑀1) and 

𝑘𝐇 (𝑅2𝐷) = min(𝑀𝐷 , 𝑀2). Eqs. (17) and (18) respectively 

become  

min(𝑀𝑆 , 𝑀1) ≥ max(𝑀1 − 𝑀2, 𝑀2 − 𝑀1) + 2, (19) 

min(𝑀𝐷 , 𝑀2) ≥ max(𝑀2 − 𝑀1, 𝑀1 − 𝑀2 ) + 2. (20) 

 Finally, combining (19) and (20) leads to the condition 

(16). 

Proven the uniqueness of the fourth-order model 

comprising the two three-order models (10) and (11), 

what is left is the need to find the uniqueness condition 

regarding (9). This third-order tensor model has the 

following Kruskal condition:  

𝑘
𝐙𝑀𝐷𝐾𝐽×𝑀𝑆

(𝑅2) + 𝑘𝐂 + 𝑘𝐒 ≥ 2𝑀𝑆 + 2. (21) 

 From hypotheses (b) and (c) from Theorem 2, 𝐂 

and 𝐒 (with very high probability) have full column-rank. 

Thus, 𝑘𝐂 = 𝑀𝑆  and 𝑘𝐒 = 𝑀𝑆 , reducing (21) to 

𝑘
𝐙𝑀𝐷𝐾𝐽×𝑀𝑆

(𝑅2) ≥ 2. This is always true if 𝐙𝑀𝐷 𝐾𝐽 ×𝑀𝑆

(𝑅2)
 does not 

have any zero column or any pair of linearly dependent 

columns . Since channel matrices are randomly drawn 

from Gaussian distributions, and 𝐆 (𝑅1) and 𝐆 (𝑅2) are full-

rank, then this condition is satisfied with probability close 

to one. 

 

3.2 Computational complexity 

The KRF algorithm consists of multiples rank-

one approximations using SVD. Apart from other 

eventual operations, such as buffering and memory 

allocation, one may count those SVD’s as the cost -

dominant process for each KRF routine. The cost of the 

algorithms in floating-point operations that compose the 

TKRF receiver are displayed in Table 1. Note that for a 

matrix of dimensions 𝐼1 × 𝐼2, the complexity of its SVD 

computation is around O(𝐼1𝐼2𝑚𝑖𝑛(𝐼1,𝐼2)) [3]. 

Table.1: TKRF’s Computational complexity in floating 

operations 

  Condition   Complexity  

KRF-1  𝑃 ≥ 𝑀𝑆  𝑚𝑖𝑛(𝑀𝐷 𝐾𝐽, 𝑁)𝑀𝐷 𝐾𝐽𝑁 𝑀𝑆  

KRF-2  𝐽 ≥ 𝑀1 𝑚𝑖𝑛(𝑀𝐷 𝐾, 𝑀𝑆 )𝑀𝐷 𝐾𝑀𝑆𝑀1 

KRF-3  𝐾 ≥ 𝑀2  𝑚𝑖𝑛 (𝑀𝐷 , 𝑀1)𝑀𝐷 𝑀1𝑀2 

 

https://dx.doi.org/10.22161/ijaers.6.1.17
http://www.ijaers.com/


International Journal of Advanced Engineering Research and Science (IJAERS)                                 [Vol-6, Issue-1, Jan- 2019] 

https://dx.doi.org/10.22161/ijaers.6.1.17                                                                                  ISSN: 2349-6495(P) | 2456-1908(O) 

www.ijaers.com                                                                                                                                                                            Page | 127  

It is noteworthy that KRF-1 tends to be more 

complex than KRF-2, while the latter is likely more 

complex than KRF-3. One of the reasons is that there is 

likely reduction of the input data volume after each 

Khatri-Rao Factorization. 

 

IV. PERFORMANCE EVALUATION 

For the assessment of the functionality of the 

proposed receiver, Bit Error Rate (BER) and channel 

Normalized Mean Square Error (NMSE) are evaluated . 

The coding matrices 𝐂, 𝐆 (𝑅1) and 𝐆 (𝑅2) are (truncated) 

DFT matrices, and we assume 𝐇 (𝑆𝑅1) ∼ 𝒞𝒩 (0,1/𝑀𝑆), 

𝐇 (𝑅1𝑅2) ∼ 𝒞𝒩(0,1/𝑀1) and 𝐇 (𝑅2𝐷) ∼ 𝒞𝒩(0,1/𝑀2). 

Symbol energy is given by 𝐸𝑆 , and the additive noise 

samples at relays and destination nodes are complex 

standard normal random variables wih variance equal to 

one. The Bit Error Rate (BER) and Channel Normalized 

Mean Square Error (NMSE) curves are evaluated using 

107  runs of Monte Carlo simulations. 

The impact of the code length 𝑃 and 𝐽, put in 

practice by the source and by the first relay station, has 

already been investigated in two-hop systems , so it is 

adequate to assume – and it was verified – that the KRST 

coding at 𝑅2 also adds a new coding gain on the outcome 

of symbol estimation in function of 𝐾. Therefore, perhaps 

it is more interesting to evaluate how the TKRF receiver 

behaves when the size of cooperative network increases. 

In the proposed model, it means when 𝑀𝑆 , 𝑀1, 𝑀2  and 

𝑀𝐷  increase. Fig. 3 demonstrates the BER curves for 𝑀 =

𝑀𝑆 = 𝑀1 = 𝑀2 = 𝑀𝐷 = {2,3,4}. 𝑀𝑆  is set to 2 to allow 

the same number of information symbols to be sent in all 

simulations. Coding spreading lengths obey the minimum 

values to satisfy identifiability condition in (15), and with 

𝑁 = 50, the uniqueness condition in Theorem 2 is also 

complied. For two modulations (4-PSK and 16-PSK), the 

TKRF receiver responded in a expected manner for a 

MIMO system: more antennas meant a greater diversity 

order and lower BER figures as 𝐸𝑆  increase, while the 

higher the modulation order, the higher the BER value. 

According to Table 1, the estimation complexity from 

𝑀 = 2 to 𝑀 = 4 increased almost 50 times. This huge 

increment came mostly from the KRF-1 routine, which 

corresponded to more than 98% of the overall complexity. 

Whilst this number does seem elevated, there is still a 

valuable energy gain to achieve a target BER (e.g. ≈ 10 

dB at BER = 10−4 for both 4-PSK and 8-PSK). 

Moreover, the decision to let the receiving node do all the 

work allows the use of the AF protocol at the relays, 

saving them from heavy power-consuming decoding 

processes. Finally, since channel estimation (KRF-2 and 

KRF-3 routines) offers very little complexity overall, a 

more frequent CSI feedback to the transmitting nodes 

would undoubtedly allow further power optimization. 

The channel NMSE for the same set of 

simulation parameters is shown in Fig. 4, but only for the 

4-PSK simulation. Besides, the curves for 𝑀 = 3 is 

ommitted to facilitate the visualization. 

 
Fig.3: Bit Error Rate (BER) 

 

The slopes of the curves indicate that CSI 

recovery responds differently for KRF-2 and KRF-3 in 

function of 𝐸𝑆  – KRF-1 is responsible for symbol 

estimation. For 𝐇 (𝑆𝑅1), approximately an order of 

magnitude of the error is reduce per decade, while for 

𝐇 (𝑅1𝑅2) and 𝐇 (𝑅2𝐷)  the KRF-3 algorithm reduces the 

NMSE in two orders of magnitude per decade.  

 
Fig.4: Channel NMSE 

 

V. CONCLUSION 

This article brought a solution for the issue of 

blind (symbol and channel) estimation in one-way, three-

hop non regenerative relaying systems. Based on - the 

nesting concept of the 4𝑡ℎ -order Nested PARAFAC 

decomposition, this work extends this idea to 5𝑡ℎ -order 

tensors, allowing the leap from two-hop system to a three-

hop system. Alongside the proposition of the new 

equations for this new derived tensor decomposition, this 

work brings an effective non-iterative semi-blind receiver. 

Computational simulations validate the proposed receiver 

and bring its performance in terms of symbol and channel 

estimation, as well as complexity and transmission rate. 
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It is important to regard the three-hop system 

(and its receiver) as an intermediate step between the two-

hop system and a generalized multi-hop scenario. There is 

a clear pattern that indicates that several expressions 

presented in this paper (as the identifiability and 

uniqueness conditions) can be further generalized to any 

number of hops. However, there are few loose ends that 

need to be addressed in the next works: one is the 

complexity one, since greater number of hops also means 

a much larger volume of data; another one, now 

appreciated, is the expressive variety of possibilities that 

opens up to deal with the data and to solve the issue of 

joint symbol and channel estimation in a multi-hop 

scenario. 
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