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Abstract—This Work presents the application of control with 𝐻∞ problem, together with pole location 

constraint by LMI formulation in a Buck converter. The uncertainties modeling of the system variables uses the 

constraint by a convex polytope. Mathematical software with the implementation of algorithms for LMIs 

solution, as well as software for circuit simulation, were used as an aid for the formulation and validation of the 

control. The result of the robust controller in a transient period is compared to a classic controller, giving 

justification for the quality of the results. 
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I. INTRODUCTION 

Direct current to direct current (DC-DC) converters are 

generally used in many applications due to its ability to 

increase or decrease voltage with high efficiency. There 

are several topologies of these converters, one of them is 

the synchronous buck converter, shown in Fig. 1, which 

only reduces its input voltage. This when compared to 

non-synchronous buck has higher efficiency at full load[1]. 

In order to deliver a near-desired voltage at the output, 

i.e.a voltage that follows a variable reference, it is essential 

to use a controller that keeps the system stable to all 

desired specifications. 

The use of linear matrix inequalities (LMIs) has 

recently been presenting efficient solutions to control 

problems. This is due to the characteristic of 

simultaneously considering various requirements, 

performance constraints and robustness through the 

formulation of LMIs. In this context, research is growing 

in several areas, focusing on control through these 

inequalities [2]. In this work, for example, a robust 

Fig. 1: Synchronous buck converter. 
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𝐻∞control is presented, adding constraints on the convex 

region, in which the closed-loop system poles can be 

placed. The main reference is the study presented in [3]. 

To validate this work, two controllers were applied to a 

DC-DC Buck converter (Fig. 1). The𝐻∞control, containing 

the constraints represented by LMIs, is performed by state 

feedback. In this way, two sensors are required, one for 

reading the converter output voltage and one for reading 

the current over the inductor. The second controller uses 

the classic approach of Proportional Integral (PI) control. 

MATLAB/Simulink software was used for system 

simulation. The SeDuMi, YALMIP and ROLMIP 

packageswere used in the solution and optimization of the 

LMIs presented in this work. 

The comparison of these two controllers allows us to 

evaluate the advantage that the 𝐻∞control with pole region 

constraint considering its characteristic uncertainties, has 

over the classic PI control. Such a comparison is 

interesting for three reasons, the first is that the load 

connected to the converter output may vary within a 

known range in which the converter is designed to work. 

The second is that the capacitance may decrease, e.g. an 

electrolytic capacitor has a liquid dielectric, which may 

degrade over time. The third is that the real components 

have tolerances,e.g.±20%, and could vary according to 

temperature, such as the capacitor and inductor present in 

the converter. 

Finally, the comparison of the results of this work aims 

to present the differences between a 𝐻∞controller with 

higher implementation cost, due to the development time 

and hardware cost, and a PI controller that has a less 

expressive cost.This paper is divided in the following 

order. Section II presents the modeling of the Buck 

converter (Fig. 1). Section III introduces the characteristics 

of the 𝐻∞controller. Section IV presents the 

implementation of control techniques and the comparison 

of results. Section V presents the conclusions. 

 

II. SYSTEM MODELING 

Two steps make up the synchronous Buck converter, 

shown in Fig. 1. On the first step of the switching 𝑆𝑊1 

conducts and 𝑆𝑊2 shall be open, on the second one 𝑆𝑊2 

conducts and 𝑆𝑊1 stays open. The duty cycle 𝑑 represents 

the portion of the switching period 𝑇𝑆, in which 𝑆𝑊1 is 

conducting. The addition of the second load in parallel to 

the resistance 𝑅, represented by the source 𝐼𝑂, represents a 

disturbance in the output current. 

Equating of the inductor voltage to each switching step 

and its weighting of the values by switching parcel results 

in (1) and (2). The equating of the capacitor current to each 

switching step, following the same weighting, results in (3) 

and (4): 

< 𝑉𝐿 > =
1

𝑇𝑆

. ((𝑉𝑔 − 𝑉𝑂 − 𝑅𝐿 . 𝐼𝐿). 𝑑. 𝑇𝑆

+ (−𝑉𝑂 − 𝑅𝐿 . 𝐼𝐿). (1 − 𝑑). 𝑇𝑆) . . . . . . (1) 

< 𝑽𝑳 > =  𝐿.
𝒅𝑰𝑳

𝒅𝒕
=  𝑽𝒈. 𝒅 − 𝑽𝑶 − 𝑹𝑳. 𝑰𝑳 . . . . . . . . . . . . . (𝟐) 

< 𝐼𝐶 > =  
1

𝑇𝑆

. ((𝐼𝐿 − 
𝑉𝑂

𝑅
− 𝐼𝑂) . 𝑑. 𝑇𝑆

+ (𝐼𝐿 − 
𝑉𝑂

𝑅
− 𝐼𝑂) . (1 − 𝑑). 𝑇𝑆) . . . . (3) 

< 𝑰𝑪 >= 𝑪.
𝒅𝑽𝑶

𝒅𝒕
=  𝑰𝑳 − 

𝑽𝑶

𝑹
− 𝑰𝑶. . . . . . . . . . . . . . . . . . . . . (𝟒) 

From (2) and (4), it is possible to perform alternating 

current(AC) modeling for small signals. In this, the 

average values summed to an AC portion replace each 

variable. The DC terms that represent the permanent 

response cancel each other.  Moreover, it is assumed that 

the second order AC terms are small compared to the first 

order ones, to the extent that you can neglectthem [4]. 

Such process is presented in (5) to (13). 

𝑉𝑔 = 𝑉𝑔̅ + 𝑉𝑔̂. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5) 

𝑉𝑂 = 𝑉𝑂
̅̅ ̅ + 𝑉𝑂̂  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (6) 

𝐼𝐿 = 𝐼𝐿̅ + 𝐼𝐿̂ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (7) 

𝐼𝑂 = 𝐼𝑂̅ + 𝐼𝑂̂ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (8) 

𝑑 = 𝑑̅ + 𝑑̂. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (9) 

𝐿.
𝑑(𝐼𝐿̅ + 𝐼𝐿̂)

𝑑𝑡
=  𝑉𝑔̅. 𝑑̅ + 𝑉𝑔̅. 𝑑̂ + 𝑉𝑔̂. 𝑑̅ + 𝑉𝑔̂. 𝑑̂ − 𝑉𝑂

̅̅ ̅ − 𝑉𝑂̂

− 𝑅𝐿 . 𝐼𝐿̅   − 𝑅𝐿 . 𝐼𝐿̂ . . . . . . . . . . . . . . . . . . . (10) 

𝑳.
𝒅(𝑰𝑳̂)

𝒅𝒕
=  𝑽𝒈

̅̅̅̅ . 𝒅̂ + 𝑽𝒈̂. 𝒅̅ − 𝑽𝑶̂ − 𝑹𝑳. 𝑰𝑳̂. . . . . . . . . . (𝟏𝟏) 

𝐶.
𝑑(𝑉𝑂

̅̅ ̅ + 𝑉𝑂̂)

𝑑𝑡
 =  𝐼𝐿̅ + 𝐼𝐿̂ − 

𝑉𝑂
̅̅ ̅

𝑅
 −  

𝑉𝑂̂
̅̅ ̅

𝑅
− 𝐼𝑂̅ − 𝐼𝑂̂ . . . . . (12) 

𝑪.
𝒅(𝑽𝑶̂)

𝒅𝒕
 =  𝑰𝑳̂ − 

𝑽𝑶̂
̅̅ ̅̅

𝑹
− 𝑰𝑶̂. . . . . . . . . . . . . . . . . . . . . . . . . . . (𝟏𝟑) 

The model given by (11) and (13) is a type 0, i.e. the 

plant has no integrator. For the steady-state system error to 

be null, for a ramp type input, it is necessary to insert an 

integrator augmented state, shown in (14) and (15). This 

transforms the system into type 1 [5]. 

𝑥3 = ∫(𝑉𝑟𝑒𝑓 − 𝑉𝑂̂). 𝑑𝑡  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (14) 

𝒅(𝒙𝟑)

𝒅𝒕
 =  𝑽𝒓𝒆𝒇 − 𝑽𝑶̂ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (𝟏𝟓) 

Considering (11), (13) and (15), it is possible to 

represent them in state space notation, as presented in (16) 

and (17): 

𝑑𝑥(𝑡)

𝑑𝑡
= 𝐴. 𝑥(𝑡) + 𝐵𝑢. 𝑢(𝑡) + 𝐵𝑤 . 𝑤(𝑡) + 𝐵𝑟𝑒𝑓 . 𝑉𝑟𝑒𝑓 . (16) 

𝑧(𝑡) = 𝐶𝑧 . 𝑥(𝑡) + 𝐷𝑧𝑢 . 𝑢(𝑡) + 𝐷𝑧𝑤 . 𝑤(𝑡). . . . . . . . . . . . . (17) 

, wherein: 
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𝑥(𝑡) = [
𝐼𝐿̂
𝑉𝑂̂

𝑥3

] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (18) 

𝑢(𝑡) = [𝑑̂] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (19) 

𝑤(𝑡) = [𝐼𝑂̂]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (20) 

𝑧(𝑡) = [𝑉𝑂̂] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (21) 

𝐴 =  

[
 
 
 
 −

𝑅𝐿

𝐿
−

1

𝐿
0

1

𝐶
−

1

𝑅. 𝐶
0

0 −1 0]
 
 
 
 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (22) 

𝐵𝑢 =  [

𝑉𝑔̅

𝐿
0
0

] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (23) 

𝐵𝑤 =  [

0

−
1

𝐶
0

] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (24) 

𝐵𝑟𝑒𝑓 = [
0
0
1
] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (25) 

𝐶𝑧 = [0 1 0]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (26) 

𝐷𝑧𝑤 = [0] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (27) 

𝐷𝑧𝑢 = [0]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (28) 

The disturbance represented by the 𝑤 vector, from the 

current source 𝐼𝑂̂, represents the behavior of the converter 

output voltage 𝑉𝑂, for sudden changes in the output current 

of the converter[3]. The parameters 𝑉𝑔̅, 𝐿, 𝐶 e 𝑅 are 

uncertain and limited to a minimum and maximum value, 

as represented by (29) to (32): 

𝛽 = 𝑉𝑔̅ 𝜖 [𝑉𝑔̅𝑚𝑖𝑚
, 𝑉𝑔̅𝑚𝑎𝑥

] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (29) 

𝛿 =
1

𝐿
 𝜖 [

1

𝐿𝑚𝑎𝑥

,
1

𝐿𝑚𝑖𝑛

] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (30) 

𝜓 =
1

𝐶
 𝜖 [

1

𝐶𝑚𝑎𝑥

,
1

𝐶𝑚𝑖𝑛

] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (31) 

𝜇 =
1

𝑅. 𝐶
 𝜖 [

1

𝐶𝑚𝑎𝑥 . 𝑅𝑚𝑎𝑥

,
1

𝐶𝑚𝑖𝑛 . 𝑅𝑚𝑖𝑛

] . . . . . . . . . . . . . . (32) 

Therefore, matrices 𝐴 and 𝐵𝑢 depend on these 𝑁 = 4  

uncertain parameters, generating a polytope with 2𝑁 = 16 

vertices. Table 1 shows the polytopic representation of 

matrices 𝐴 and 𝐵𝑢. 

 

III. ROBUST CONTROL CHARACTERISTICS 

This Section presents the characteristics of the robust 

𝐻∞ control developed in this paper. 

3.1 LMIs 

Considering 𝑥 ∈  ℝ𝑚 as the variable and 𝐹𝑖 = 𝐹𝑖′ as 

non-variant matrices. An LMI has the form given in (33): 

𝐹(𝑥) ≜ 𝐹0 + ∑𝐹𝑖𝑥𝑖 > 0

𝑚

𝑖=1

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . (33) 

According to [6], there is an LMI feasibility problem 

when a solution 𝑥 has to be found, such that𝐹(𝑥) > 0. 

The analysis of LMIs in dynamic systems has over a 

century of study, beginning in 1890, when Lyapunov’s 

theory was published. This theory shows that a differential 

equation, given in (34), is stable, if and only if, there is a 

positive definite matrix𝑃, which satisfies (35): 

𝑑

𝑑𝑡
𝑥(𝑡) = 𝐴𝑥(𝑡). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (34) 

𝐴′𝑃 + 𝑃𝐴 < 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (35) 

Lyapunov proved that for the LMI in (35) to have a 

solution𝑃 > 0, one must choose any matrix 𝑄 > 0and 

solve the equation𝐴′𝑃 + 𝑃𝐴 + 𝑄 = 0. If 𝑃 > 0 is found, 

there is a solution [2]. 

The sequence of studies on LMIs showed that the 

classic LQR (Linear Quadratic Regulator) problem, 

associated with the Riccati equation, could be represented 

as an LMI problem, through the Schur complement [2]. 

This verification is important because, if possible, several 

problems can be solved together, if represented in LMI 

form, as shown in (36) with𝑘constraints. 

𝐹(𝑥) = 𝑑𝑖𝑎𝑔{𝐹0(𝑥), 𝐹1(𝑥), … , 𝐹𝑘(𝑥)} > 0. . . . . . . . . . . (36) 

Over time, several algorithms have been developed for 

the solution and optimization of LMIs, such as 

Nemirovskii’s algorithm [2]. Today, with computational 

packages, LMIs have become an efficient tool in many 

engineering areas, including modern control [7]. 

3.2 Quadratic stability 

The existence of a quadratic function, given in (37), 

that satisfies 𝑉̇(𝑥) < 0, is a necessary and sufficient 

condition to assume that the linear system, presented in 

(34), is stable. Thus resulting in (38): 

𝑉(𝑥) = 𝑥′𝑃𝑥 > 0,    ∀𝑥 ≠ 0 . . . . . . . . . . . . . . . . . . . . . . . . . . (37) 

𝑉̇(𝑥) = 𝑥′(𝐴′𝑃 + 𝑃𝐴)𝑥 < 0,   ∀𝑥 ≠ 0. . . . . . . . . . . . . . . . (38) 

Then, the system is stable, if and only if, there is a 

positive definite symmetric matrix𝑃, for which𝑉̇(𝑥) < 0. 

To satisfy (38), the conditions in (39) must be met: 

∃𝑃 > 0 ;     𝐴′𝑃 + 𝑃𝐴 < 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . (39) 

If the uncertainties in 𝐴 are polytopic, the feasibility of 

the LMI problem must be verified, i.e. the polytope must 

have 𝑗 vertices. Then, a 𝑃 > 0solution must be found, such 

that (40) is met: 

𝐴𝑖
′𝑃 + 𝑃𝐴𝑖 < 0,   𝑖 = 1,2, … , 𝑗. . . . . . . . . . . . . . . . . . . . . . . . (40) 

The feasibility of this problem implies that the system 

is stable for every matrix belonging to the polytope. 
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3.3 Quadratic stability for a closed-loop system with 

state feedback 

The LMIs in (39) are adapted for a closed-loop system 

with state feedback 𝑢 = 𝐾𝑥. Works [3] and [8] simplify 

these LMIs using the following theorem: 

Theorem 3.1: The closed-loop system with state 

feedback 𝑢 = 𝐾𝑥 is stable, if and only if, there is a 

symmetric matrix𝑊 ∈ ℝ𝑛𝑥𝑛and a matrix𝑌 ∈ ℝ𝑚𝑥𝑛, such 

that: 

𝑊 > 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (41) 

𝐴𝑊 + 𝑊𝐴′ + 𝐵𝑢𝑌 + 𝑌′𝐵𝑢
′ < 0 . . . . . . . . . . . . . . . . . . . . . . (42) 

The state feedback gain is obtained by (43): 

𝐾 = 𝑌𝑊−1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (43) 

3.4 Pole placement 

The main motivation for pole clustering, in a specific 

region on the left side of the complex plane, is the transient 

response characteristics of a linear system.  A second order 

system, e.g. with poles −𝜁𝑤𝑛 ± 𝑗𝑤𝑑 , is fully characterized 

in terms of the undamped natural frequency𝑤𝑛 = |𝜆|, the 

damping rate𝜁 and the damped natural frequency𝑤𝑑 =

𝑤𝑛√1 − 𝜁2.By constraining and fixing 𝜆 in a prescribed 

region, bounds can be put on the characteristic values, thus 

ensuring a satisfactory transient response. The regions of 

interest, that can be defined, include the𝛼-stability regions 

vertical strips, disks, conic sectors, (𝑅𝑒(𝑠) ≤ −𝛼), and 

others [9]. 

The prominent region of this project, which has control 

purposes, is characterized by the set 𝑆(𝛼, 𝜌, 𝜃), composed 

of complex numbers σ+𝑗𝑤𝑑 , that satisfy (44) [9]: 

σ < −𝛼 < 0;     |σ + 𝑗𝑤𝑑| < 𝜌;      𝑡𝑎𝑛𝜃σ < −|𝑤𝑑| (44) 

Table 1: Polytopic representation of matrices 𝐴 and 𝐵𝒖. 

𝐴1 = 

[
 
 
 −

𝑅𝐿

𝐿𝑚𝑖𝑛
−

1

𝐿𝑚𝑖𝑛
0

1

𝐶𝑚𝑖𝑛
−

1

𝑅𝑚𝑖𝑛.𝐶𝑚𝑖𝑛
0

0 −1 0]
 
 
 
 ,   𝐵𝑢1

= [

𝑉𝑔̅̅̅̅ 𝑚𝑖𝑚

𝐿𝑚𝑖𝑛

0
0

] 𝐴9 = 

[
 
 
 −

𝑅𝐿

𝐿𝑚𝑎𝑥
−

1

𝐿𝑚𝑎𝑥
0

1

𝐶𝑚𝑖𝑛
−

1

𝑅𝑚𝑖𝑛.𝐶𝑚𝑖𝑛
0

0 −1 0]
 
 
 
 ,      𝐵𝑢9

= [

𝑉𝑔̅̅̅̅ 𝑚𝑖𝑚

𝐿𝑚𝑎𝑥

0
0

] 

𝐴2 = 

[
 
 
 −

𝑅𝐿

𝐿𝑚𝑖𝑛
−

1

𝐿𝑚𝑖𝑛
0

1

𝐶𝑚𝑎𝑥
−

1

𝑅𝑚𝑖𝑛 .𝐶𝑚𝑎𝑥
0

0 −1 0]
 
 
 
 ,   𝐵𝑢2

= [

𝑉𝑔̅̅̅̅ 𝑚𝑖𝑚

𝐿𝑚𝑖𝑛

0
0

] 𝐴10 = 

[
 
 
 −

𝑅𝐿

𝐿𝑚𝑎𝑥
−

1

𝐿𝑚𝑎𝑥
0

1

𝐶𝑚𝑎𝑥
−

1

𝑅𝑚𝑖𝑛.𝐶𝑚𝑎𝑥
0

0 −1 0]
 
 
 
 ,   𝐵𝑢10

= [

𝑉𝑔̅̅̅̅ 𝑚𝑖𝑚

𝐿𝑚𝑎𝑥

0
0

] 

𝐴3 = 

[
 
 
 −

𝑅𝐿

𝐿𝑚𝑖𝑛
−

1

𝐿𝑚𝑖𝑛
0

1

𝐶𝑚𝑖𝑛
−

1

𝑅𝑚𝑎𝑥.𝐶𝑚𝑖𝑛
0

0 −1 0]
 
 
 
 ,   𝐵𝑢3

= [

𝑉𝑔̅̅̅̅ 𝑚𝑖𝑚

𝐿𝑚𝑖𝑛

0
0

] 𝐴11 = 

[
 
 
 −

𝑅𝐿

𝐿𝑚𝑎𝑥
−

1

𝐿𝑚𝑎𝑥
0

1

𝐶𝑚𝑖𝑛
−

1

𝑅𝑚𝑎𝑥.𝐶𝑚𝑖𝑛
0

0 −1 0]
 
 
 
 ,   𝐵𝑢11

= [

𝑉𝑔̅̅̅̅ 𝑚𝑖𝑚

𝐿𝑚𝑎𝑥

0
0

] 

𝐴4 = 

[
 
 
 −

𝑅𝐿

𝐿𝑚𝑖𝑛
−

1

𝐿𝑚𝑖𝑛
0

1

𝐶𝑚𝑎𝑥
−

1

𝑅𝑚𝑎𝑥.𝐶𝑚𝑎𝑥
0

0 −1 0]
 
 
 
 ,   𝐵𝑢4

= [

𝑉𝑔̅̅̅̅ 𝑚𝑖𝑚

𝐿𝑚𝑖𝑛

0
0

] 𝐴12 = [

−
𝑅𝐿

𝐿𝑚𝑎𝑥
−

1

𝐿𝑚𝑎𝑥
0

1

𝐶𝑚𝑎𝑥
−

1

𝑅𝑚𝑎𝑥.𝐶𝑚𝑎𝑥
0

0 −1 0

] ,  𝐵𝑢12
= [

𝑉𝑔̅̅̅̅ 𝑚𝑖𝑚

𝐿𝑚𝑎𝑥

0
0

] 

𝐴5 = 

[
 
 
 −

𝑅𝐿

𝐿𝑚𝑖𝑛
−

1

𝐿𝑚𝑖𝑛
0

1

𝐶𝑚𝑖𝑛
−

1

𝑅𝑚𝑖𝑛 .𝐶𝑚𝑖𝑛
0

0 −1 0]
 
 
 
 ,   𝐵𝑢5

= [

𝑉𝑔̅̅̅̅ 𝑚𝑎𝑥

𝐿𝑚𝑖𝑛

0
0

] 𝐴13 = 

[
 
 
 −

𝑅𝐿

𝐿𝑚𝑎𝑥
−

1

𝐿𝑚𝑎𝑥
0

1

𝐶𝑚𝑖𝑛
−

1

𝑅𝑚𝑖𝑛.𝐶𝑚𝑖𝑛
0

0 −1 0]
 
 
 
 ,   𝐵𝑢13

= [

𝑉𝑔̅̅̅̅ 𝑚𝑎𝑥

𝐿𝑚𝑎𝑥

0
0

] 

𝐴6 = 

[
 
 
 −

𝑅𝐿

𝐿𝑚𝑖𝑛
−

1

𝐿𝑚𝑖𝑛
0

1

𝐶𝑚𝑎𝑥
−

1

𝑅𝑚𝑖𝑛 .𝐶𝑚𝑎𝑥
0

0 −1 0]
 
 
 
 ,   𝐵𝑢6

= [

𝑉𝑔̅̅̅̅ 𝑚𝑎𝑥

𝐿𝑚𝑖𝑛

0
0

] 𝐴14 = 

[
 
 
 −

𝑅𝐿

𝐿𝑚𝑎𝑥
−

1

𝐿𝑚𝑎𝑥
0

1

𝐶𝑚𝑎𝑥
−

1

𝑅𝑚𝑖𝑛.𝐶𝑚𝑎𝑥
0

0 −1 0]
 
 
 
 ,   𝐵𝑢14

= [

𝑉𝑔̅̅̅̅ 𝑚𝑎𝑥

𝐿𝑚𝑎𝑥

0
0

] 

𝐴7 = 

[
 
 
 −

𝑅𝐿

𝐿𝑚𝑖𝑛
−

1

𝐿𝑚𝑖𝑛
0

1

𝐶𝑚𝑖𝑛
−

1

𝑅𝑚𝑎𝑥.𝐶𝑚𝑖𝑛
0

0 −1 0]
 
 
 
 ,   𝐵𝑢7

= [

𝑉𝑔̅̅̅̅ 𝑚𝑎𝑥

𝐿𝑚𝑖𝑛

0
0

] 𝐴15 = 

[
 
 
 −

𝑅𝐿

𝐿𝑚𝑎𝑥
−

1

𝐿𝑚𝑎𝑥
0

1

𝐶𝑚𝑖𝑛
−

1

𝑅𝑚𝑎𝑥.𝐶𝑚𝑖𝑛
0

0 −1 0]
 
 
 
 ,   𝐵𝑢15

= [

𝑉𝑔̅̅̅̅ 𝑚𝑎𝑥

𝐿𝑚𝑎𝑥

0
0

] 

𝐴8 = 

[
 
 
 −

𝑅𝐿

𝐿𝑚𝑖𝑛
−

1

𝐿𝑚𝑖𝑛
0

1

𝐶𝑚𝑎𝑥
−

1

𝑅𝑚𝑎𝑥.𝐶𝑚𝑎𝑥
0

0 −1 0]
 
 
 
 ,   𝐵𝑢8

= [

𝑉𝑔̅̅̅̅ 𝑚𝑎𝑥

𝐿𝑚𝑖𝑛

0
0

] 𝐴16 = [

−
𝑅𝐿

𝐿𝑚𝑎𝑥
−

1

𝐿𝑚𝑎𝑥
0

1

𝐶𝑚𝑎𝑥
−

1

𝑅𝑚𝑎𝑥.𝐶𝑚𝑎𝑥
0

0 −1 0

] ,  𝐵𝑢16
= [

𝑉𝑔̅̅̅̅ 𝑚𝑎𝑥

𝐿𝑚𝑎𝑥

0
0

] 
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Fig. 2: Pole region constraint geometry [9]. 

 

Fig. 2 (a) demonstrates the set S and its variables.The 

comparison of Fig. 2 (a) and Fig. 2 (b) relates certain 

parameters of a control system, such as the minimum 

decay rate𝛼 =  𝜁𝑤𝑛, the minimum damping ratio𝜁 =

𝑐𝑜𝑠𝜃, and the maximum undamped natural frequency𝑤𝑑 =

𝜌. 𝑠𝑒𝑛.Setting the minimum or maximum characteristics of 

each parameterbounds the maximum overshoot, delay 

time, rise time and settling time [9]. 

From [9] a study is made for the representation of the 

constraint, presented in Fig. 2 (a), by means of LMIs. 

Works [3] and [8] simplify these LMIs by the following 

theorem: 

Theorem 3.2: The closed-loop poles of a system, 

considering the state feedback control law 𝑢 = 𝐾𝑥, are 

within the region defined by the set𝑆(𝛼, 𝑟, 𝜃), if there is a 

positive symmetric matrix𝑊and a matrix𝑌, such that: 

𝐴𝑊 + 𝑊𝐴′ + 𝐵𝑢𝑌 + 𝑌′𝐵′𝑢 + 2𝛼𝑊 < 0 . . . . . . . . . . . . . (45) 

[
−𝜌𝑊 𝑊𝐴′ + 𝑌′𝐵′𝑢

𝐴𝑊 + 𝐵𝑢𝑌 −𝜌𝑊
] < 0. . . . . . . . . . . . . . . . . . . . . (46) 

[
𝑠𝑒𝑛𝜃(𝐴𝑊 + 𝑊𝐴′ + 𝐵𝑢𝑌 + 𝑌′𝐵′

𝑢)

𝑐𝑜𝑠𝜃(−𝐴𝑊 + 𝑊𝐴′ − 𝐵𝑢𝑌 + 𝑌′𝐵′
𝑢)

 

𝑐𝑜𝑠𝜃(𝐴𝑊 − 𝑊𝐴′ + 𝐵𝑢𝑌 − 𝑌′𝐵′
𝑢)

𝑠𝑒𝑛𝜃(𝐴𝑊 + 𝑊𝐴′ + 𝐵𝑢𝑌 + 𝑌′𝐵′
𝑢)

] < 0. . . . . (47) 

O ganho de realimentação de estados é dado por (48): 

𝐾 = 𝑌𝑊−1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (48) 

3.5 The𝑯∞ norm 

The𝐻∞norm can be represented by the 𝐻2 norm, being 

equivalent to the largest value obtained by this 

one.Therefore, considering the𝒢 operatorsbelonging to 

the𝐻∞ space, (49) is defined: 

‖𝒢‖∞ = 𝑠𝑢𝑝𝑥∈ℒ2

‖𝒢𝑥‖2

‖𝑥‖2

= 𝑠𝑢𝑝‖𝑥‖2=1‖𝒢𝑥‖2. . . . . . . . . . (49) 

If the operator is a transfer function𝐺(𝑠), the definition 

in (50) can be used: 

‖𝐺‖∞ = 𝑠𝑢𝑝𝑤𝜎{𝐺(𝑗𝜔)} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (50) 

Considering that𝜎{𝐺(𝑗𝑤)}is the maximum singular 

value of𝐺(𝑗𝜔). If𝐺(𝑠) isa SISO (Single Input and Single 

Output) transfer function, the𝐻∞ normcorresponds to the 

largest value of the Bode diagram, for example. 

The𝐻∞ problemconsists of finding a controller, such 

that the𝐻∞norm of the closed-loop transfer function 𝐺𝑤𝑧  

(where𝑤is the disturbance and𝑧is the output) is minimized, 

i.e. less than a specified value𝛾.This value being 

determined using a particular case of the small gain 

theorem. 

The work [2] explains how to calculate the 𝐻∞norm for 

a closed-loop system with state feedback, determining the 

dual system LMIs, presented by [10] using the following 

theorem: 

Theorem 3.3: A closed-loop system with state 

feedback𝑢 = 𝐾𝑥 and
‖𝑍‖2

‖𝑤‖2
< 𝛾, is stable,if and only if, 

there is a positive defined symmetric matrix𝑊 ∈

 ℝ𝑛𝑥𝑛and a matrix𝑌 ∈  ℝ𝑚𝑥𝑛 , such that: 

[

𝐴𝑊 + 𝑊𝐴′ + 𝐵𝑢𝑌 + 𝑌′𝐵′𝑢 𝐵𝑤 𝑊𝐶𝑍
′ + 𝑌′𝐷𝑧𝑢

𝐵′𝑤 −𝛾𝐼 𝐷′𝑧𝑤

𝐶𝑧𝑊 + 𝐷𝑧𝑢𝑌 𝐷𝑧𝑤 −𝛾𝐼

]

< 0. . (51) 

The constraint proposed in (41) and (42) is included in 

(51), so Theorem 3.3 ensures quadratic stability. 

 

IV. SIMULATION RESULTS 

The model obtained in Section II for the Buck 

converter does not take into account its switching 

frequency          𝑓𝑆 = 100𝑘𝐻𝑧. In order to prevent the 

control from destabilizing, it is necessary to limit the 

maximum bandwidth of the controller to a frequency 10 

times lower than the switching frequency [3]. 

The purpose of the 𝐻∞control is to have a maximum 

overshoot of 20% (%𝑂𝑣𝑒𝑟) and a minimum settling time 
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of 10ms (𝑇𝑒). The parameters α, θ e ρcan be related to the 

desired system performance through (52) to (55) [5]. 

𝜉 =  
−𝑙𝑜𝑔(%𝑂𝑣𝑒𝑟/100)

√𝜋2 + 𝑙𝑜𝑔(%𝑂𝑣𝑒𝑟/100)²
=  0,45595 . . . . . . . . (52) 

𝜃 = 𝑎𝑟𝑐𝑜𝑠(𝜉) = 62,8739° . . . . . . … … … . . . . . . . . . . . . . . (53) 

𝛼 =
4

𝜉. 𝑇𝑒

= 877.28. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (54) 

𝜌 = 2. 𝜋.
fS
10

= 62831.85 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (55) 

The synchronous Buck converter always operates 

similar to the continuous conduction mode, since its 

switches do not depend on the current flowing in the 

inductor to polarize, as it does in the non-synchronous 

converter's diode [1].For any 𝑅 load, there is a peak-to-

peak output voltage ripple of 𝛥𝑉𝑜 =  12,5𝑚𝑉, and in the 

inductor there is a peak-to-peak current ripple equivalent 

to𝛥𝐼𝐿 = 500𝑚𝐴. 

Such ripples are the result of the switching process, and 

the maximum values are defined in the converter 

design.The controller itself cannot mitigate these ripples. 

For the converter operating at steady state, the minimum 

values of the inductor𝐿and capacitor𝐶are defined 

according to (56) and (57). In these, the duty cycle𝐷 =

0.5is where the largest ripples of current and voltage occur 

[11]. The inductor 𝐿in practice is not ideal as it has a fixed 

resistance𝑅𝐿. 

𝐿𝑚𝑖𝑛 = 
𝑉𝑔̅𝑚𝑎𝑥

. 𝐷. (1 − 𝐷)

𝛥𝐼𝐿 . 𝑓𝑆
. . . . . . . . . . . . . . . . . . . . . . . . . . . (56) 

𝐶𝑚𝑖𝑛 = 
𝑉𝑔̅𝑚𝑎𝑥

. 𝐷. (1 − 𝐷)

8. 𝐿𝑚𝑖𝑛 . 𝛥𝑉𝑜 . 𝑓𝑆
2  . . . . . . . . . . . . . . . . . . . . . . . . . . (57) 

The values range of the DC-DC Buck converter 

uncertain parameters is shown in Table 2. 

Table 2: DC-DC Buck converter parameters. 

Parameters Values Range 

𝑅𝐿 0.1 Ω 

𝐿 [500, 800]𝜇𝐻 

𝐶 [50, 200]𝜇𝐹 

𝑅 [2, 100]𝑘Ω 

𝑉𝑔 [80, 100]𝑉 

 

Using MATLAB, the converter system, described in 

(16) and (17), with its polytopic representation of 16 

vertices, shown in Table 1, was implemented for the 

parameter ranges presented in Table 2.With the aid of the 

SeDuMi, YALMIP and ROLMIP packages, the LMIs, 

represented by (41), (45), (46), (47) and (51), were 

optimized.As a result, the state feedback gain, in (58), was 

obtained. The gamma minimization resulted in𝛾 =

4.0809. The block diagram representation, built with 

MATLAB/Simulink, of the Buck converter with state 

feedback control, is shown in Fig. 3. 

𝐾 = [0.3389 −0.4435 603.6809] . . . . . . . . . . . . . . . (58) 

The PI controller was designed, for comparison, with 

the parameters presented in Table 3. As a result, the 

proportional and integral gains are shown, respectively, in 

(59) and (60). 

Table 3: PI control design parameters. 

Parameters Values 

Margem de Fase 45.5950° 

𝑓𝑐 558 𝐻𝑧 

𝐿 650 𝜇𝐻 

𝐶 125 𝜇𝐹 

𝑅 5 𝑘Ω 

𝑉𝑔 90 𝑉 

 

𝐾𝑃 = 3.5951 × 10−4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (59) 

𝐾𝐼 = 1.1827. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (60) 

To evaluate the response of the implemented 

controllers, five test scenarios were defined. In the first 

one, the performance of the controllers was compared, 

without considering the uncertainties in the Buck converter 

parameters.In this scenario, the voltage reference was a 

step signal equivalent to𝑉𝑟𝑒𝑓 = 60 𝑉at the initial time, and 

changed to𝑉𝑟𝑒𝑓 = 30 𝑉 after0.05 𝑠. The output voltages 

obtained for the robust and PI controllers are shown in Fig. 

4. 
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Fig. 3: Synchronous Buck converter with state feedback control. 

 

 
Fig. 4: Converter output voltage scenario 1. 

The next four test scenarios evaluated the system 

response considering the uncertainties in the system 

parameters.The voltage reference was a step signal 

equivalent to 𝑉𝑟𝑒𝑓 = 60 𝑉 at the initial time, and changed 

to 𝑉𝑟𝑒𝑓 = 30 𝑉 after 0.08 𝑠. The voltage input was a step 

signal equivalent to 𝑉𝑔 = 100 𝑉 at the initial time, and 

changed to 𝑉𝑔 = 80 𝑉 after 0.12 𝑠. The load R also varied, 

initially it was𝑅 = 100 𝑘Ω, changing to 𝑅 =

2 Ωattime0.04 𝑠, and to𝑅 = 10 Ωattime0.06 𝑠. These 

settings were used for the test scenarios 2, 3, 4, and 5. 

Considering the values range of the DC-DC Buck 

converter uncertain parameters, shown in Table 2, the 

scenario 2 converter was configured with inductance      

𝐿 = 500 𝑢𝐻and capacitance𝐶 = 50 𝑢𝐹. Fig. 5 compares 

the scenario 2 control responses. 

 
Fig. 5: Converter output voltagescenario 2. 

The scenario 3 converter was configured with 

inductance 𝐿 = 500 𝑢𝐻 and capacitance 𝐶 = 200 𝑢𝐹. Fig. 

6 compares the scenario 3 control responses. 

 
Fig. 6: Converter output voltage scenario 3. 

 

The scenario 4 converter was configured with 

inductance 𝐿 = 800 𝑢𝐻 and capacitance 𝐶 = 50 𝑢𝐹. Fig. 

7 compares the scenario 4 control responses. 
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Fig. 7: Converter output voltage scenario 4. 

The scenario 5 converter was configured with 

inductance 𝐿 = 800 𝑢𝐻 and capacitance 𝐶 = 200 𝑢𝐹. Fig. 

8 compares the scenario 5 control responses. 

 
Fig. 8: Converter output voltage scenario 5. 

It can be observed in Figs. 5 to 8 that for all the 

uncertainties considered in the design, the proposed robust 

controller was stable and within the desired performance 

conditions. The robust controller presented satisfactory 

transient responses to the 𝑅 step loads and the applied 

input voltage 𝑉𝑔, in comparison to the classic PI controller 

operating outside its nominal design range. 

 

V. CONCLUSION 

The set of linear matrix inequalities (LMIs) presented 

in this work allows us to ensure robustness and closed-

loop poles placement within the desired region, for any 

state space modeled system. In this work, a Synchronous 

Buck converter was modeled and a state feedback gain, 

obtained from the LMIs optimization, was applied. The 

system’s robustness and the desired performance were 

observed through simulation. 

The proposed robust controller achieved a more 

consistent performance over the adopted parameters range, 

in comparison to the classic PI control. As can be observed 

when the output loads are changed, and a step signal is 

applied to the converter’s input voltage, for the minimum 

and maximum values of the adopted inductance and 

capacitance ranges. 
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