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Abstract— The increasing volume of spam has become a serious threat not only to the Internet, but also to 

society. This paper presents a C++ code to implement a spam filtering based on the use of Bayesian spam 

filtering for Wolaytta text. Our experiments indicate that using this approach to filter spam e-mails is a good 

approach for languages like Wolaytta. 
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I. INTRODUCTION 

With the advancement in electronic and computer 

technology there is an explosive growth in the use of 

computers for processing information. In today’s 

computer-connected society, among the existing forms of 

communication email has become the fastest and most 

economical form of available communication. 

According to recent surveys, 60% of all e-mail traffic is 

spam [1]. In this way a great amount of bandwidth is 

wasted and the e-mail systems are overloaded. Due to the 

above serious problems, measures must be taken to deal 

with the spam phenomenon. The best such measure has 

proven to be spam filtering. 

This paper demonstrates the use of Bayes’ formula in 

filtering spam messages of Wolaytta text. Achieving the 

goal for local languages like Wolaytta would also provide 

novel knowledge about cognition, understanding, and 

mechanism of spam filtering with the possibility of 

considering some of the features of the language. 

 

II. BAYESIAN PROBABILITY 

Bayesian probability is one of the major theoretical and 

practical frameworks for reasoning and decision making 

under uncertainty [2]. The historical roots of this theory lie 

in the late 18th, early 19th century, with Thomas Bayes [2] 

and Pierre-Simon de Laplace [3]. It was “forgotten” for a 

long time, and began to be re-appreciated in different 

application domains, during various periods of the 20th 

century. Hence, Bayesian probability was never developed 

as one single, homogeneous piece of scientific activity. 

Bayesian concepts, methods and solutions for different 

applications became known for decades under various 

names: the Bayesian approach to uncertainty reasoning, 

Bayesianism, the Bayesian framework, the Bayesian 

paradigm, plausible inference, and Bayesian reasoning 

A. Bayes’ Formula 

In basic terms, Bayes’ Formula allows us to determine 

the probability of an event occurring, based on the 

probabilities of two or more independent evidentiary 

events [4]. Mathematically, the general formula is 

represented as: P(Ej|F) 

 
Assuming that the variables a and b are the probabilities 

of two evidentiary events, the probability would be equal 

to: 

 
For three evidentiary events a, b, and c, the formula 

expands so the probability is equal to: 

 
In this fashion, the formula can be expanded to 

accommodate any number of evidentiary events. The 

Bayes formula lets us combine the probability of multiple 

independent events into one number with a range of 0.0 to 

1.0. Here the Bayes’ formula is used to figure out the 

probability that a message is spam based on the words 

appearing in it. 

The block diagram below in figure 1 shows how the 

spam filter module is designed. The goal of the filter 

program is to filter spam messages as it occurs as a 

legitimate mail message. The program takes data to train 

the train_data_table, a table which is used to store words 

(tokens) that appear in spam and non-spam messages along 

with their frequency both in spam and non-spam messages. 

It also has columns that hold calculated values of 

probability and spamicity. The filter: 

I. Parses each word in sample spam and legitimate 

(non-spam) messages. These messages are used to 

train the filter with possible tokens that appear in 

spam message. 
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II. For each token it uses its frequency both in spam 

and legitimate messages. The frequency is then 

used to calculate the probability of each token 

being as it being appears in spam and legitimate 

messages. 

III. The calculated probability then yields the spamicity. 

 

Fig. 1: Spam Filter Module 

 

The first thing we need to do is to provide the filter with 

a couple of spam and legitimate messages. This will allow 

the filter to train itself the difference between spam and 

non-spam messages. When we humans accidentally read a 

spam message, we almost immediately recognize it as 

spam because of certain key words (such as “viagra” and 

“mortgage”) or phrases (such as “Get your free porn 

here!”). Instinctively, we know that a message containing 

these words or phrases is spam because of our experience 

in dealing with junk mail. The opposite is true as well. We 

can almost instantly look at a message from our mother 

(containing phrases such as “When are you going to get 

married so I can have grandchildren?”) or our boss 

(containing phrases such as “Less computer solitaire and 

more work if you want a paycheck this Friday”) and know 

they’re not spam. 

 

III. WOLAYTTA LANGUAGE 

Wolaytta is an Omotic language family which is a 

branch of the Afro-Asiatic language phylum spoken in the 

Wolaytta Zone and some parts of the Southern Nations, 

Nationalities, and People’s Region of Ethiopia [6]. The 

term ‘Wolaytta’ is used as the name by which the people 

refer to themselves, their region and their language. The 

Wolaytta language is written in the Latin alphabet. It is 

one of the languages known as it has complex morphology. 

 

IV. THE SYSTEM (BAYESIAN FILTER) 

The system developed here implements the Bayes’ filter. 

It is named ‘Wolaytta_Spam_Filter’. To develop the 

system, I used C++ programming language that I am 

familiar with. The system uses a single table (vector) to 

store tokens that are supposed to be both in spam and non-

spam messages. The messages are written in Wolaytta. 

A. Training Data 

The more we train our filter the more it will become 

accurate. We “train” the filter by showing it a bunch of 

mail messages, and telling it whether the message is spam. 

Whenever we show a message to the filter, it finds every 

word in the message and stores it (along with how many 

times it occurred) in a database. 

To train the system I translated the most familiar spam 

messages occur in English to Wolaytta text and give the 

system the text in .txt file format. This due to the problem 

of inaccessibility of any written text for this language in 

Examples of the spam and non-spam messages used for 

the training ‘Wolaytta_Spam_Filter’ are listed below. 

Table I:  Sample Spam and Non-Spam messages of 

Wolaytta 

Spam and Non-Spam messages 

Spam Messages 

1. Tanni kehini nena sikio gishawu tannara 

gayitanawu koiko hachi tawu silikia shocha. Ta 

nena dossiyoo gishsha ta neyoo kittido ta 

pootuwan beada ne tana dossiko tayoo neeni 

silkkiyaan tani neeko yaada nenaara gayttana. 

2. Dvyaa Lotoriyaa gakanadani koiko tayo 

nenni birra bankirra yedana mala tomooseyis. 

Hega otanawu ne koiko tanni niyo esuwara 

polissada nena America bitta yedana. Nena dvyaa 

qaaday gakkido gishaw, ne bankkiyaa payduwaa 

nussi issi agnnaa gakkanaashin eesuwan xaafa. Ne 

hegaa xaafa simishiin nu neyoo nena ekkida giya 

woraqataa yedana. 

Non Spam Messages 

1. Tani issi shanne uddppu xeetane eudpu 

tamanu marotetaa layttan yeletasi. Hega gioge ta 

layitai hae eshattamapee aleissi gioga. La Taddalla 

aymala deay waanada xayadii? Ne ossoy aymalee? 

Ne naati ubbayka saroo? Ne siiqo machchiyaa 

aymalee? Taani neeko mata wodiyaan yaana. 

Hegee gakkanaashin saro dea. 

2. Ha gidooni intte ooso keettay oosanchchasi 

oorata oosuwan qadaa kessidogaa kessidoogaa 

siyaasi shiinawude gakkanawu takii? Ubbankka 

neesi wontto silkkiaa shoccana. Saro taka 

 

For training purpose, the filter takes tokens both form 

spam and non-spam messages. For this project I used 4 

spam and 4 non-spam messages for training purpose. The 

messages listed above only show the content of the 

messages. 

Here I used Wireshark, a network analysis tool, for 

capturing the actual messages as if it is sent through E-

Mail. While sending the E-Mail Wireshark uses http 

protocol and hence, I extracted the content of the messages 

from the raw packets. During spam filtering the main focus 

is on the actual message content so that other parts of the 
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message such as Header parts are not important to be listed 

here in training data. As a result, the header and body 

fields along with their values are not included in the 

message texts listed above. 

All title and author details must be in single-column 

format and must be centered. 

The messages are hence used to populate the filter table. 

The probabilities are calculated using an easy probability 

formula used to compute the probability value. In order to 

calculate the probability of each token the filter use the 

frequency of the token as it appears on spam and non-spam 

messages. The values of the calculated probabilities are 

used to compute the spamicity of a given token. 

This probability value assigned to each word is 

commonly referred to as spamicity, and ranges from 0.0 to 

1.0. If spamicity value for a given word is greater than 0.5 

then the message containing the word/token is likely to be 

spam, while a spamicity value less than 0.5 indicates that a 

message containing the word is likely to be ham (non-

spam). A spamicity value of 0.5 is neutral, meaning that it 

has no effect on the decision as to whether a message is 

spam or not. 

Some spam filtering applications use a separate table for 

spams and non-spam messages. Here I used a common 

table for both spam and non-spam messages. This 

approach is easy for reading the values that correspond to a 

particular token. A count of messages used for training is 

also kept on the database to calculate the probabilities. 

 

Table II: Sample Spam and Non-Spam messages of 

Wolaytta 

Token 

 

Spam 

frequency 

  Non-

spam 

frequency 

 

Pr(spam) 

Pr(non-

spam) Spamicity 

 

     

     

Tanni 4  0  1 0 1  

         

Kehini 1  0  0.25 0 1  

         

Nena 3  0  0.75 0 1  

         

Aleissi 

0 

 1  0 0.25 0  

        

Hega 1  1  0.25 0.25 0.5  

         

Nyio 2  0  0.5 0 1  

           

 

The implementation of the filter to create the above 

train database uses the following structures: 

 

typedef struct token_table 

 

{ 

 

string word; 

 

int id; 

 

int non_spam_freq; 

 

int spam_freq; 

 

float ps; 

 

float pns; 

 

float spamicity; 

 

}token_table; 

 

The “token_table” is a structure used to hold tokens 

parsed for spam and non-spam messages. Non-spam and 

spam fields store integer values that tell the number of 

appearances of a word in spam and non-spam messages. 

These values are used for finding the probabilities of each 

word that exists within the messages. 

Once the Bayesian filter has the list of tokens in the 

table, it searches the spam and non-spam tokens databases 

for these tokens. These databases of tokens are created and 

updated whenever the Bayesian filter is “trained” on a new 

message. This implies training only requires messages that 

are supposed to be spam and non-spam. 

If a token from the message is found in the databases, 

the Bayesian filter calculates the token’s spamicity based 

on the following variables: 

I. The frequency of the token in spam messages that 

the filter has been trained on 

II. The frequency of the token in ham messages that 

the filter has been trained on 

III. The number of spam messages the filter has been 

trained on 

IV. The number of ham messages the filter has been 

trained on 

The algorithm used to calculate a token’s spamicity 

from these pieces of information is as follows: 

 

 
Equation 1 
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Equation 2 

 

If either Ham probability or Spam probability are 

greater than 1.0, it sets them equal to 1.0. 

 

 
Equation 3 

The structure used to store the tokens along with their 

structure members are shown below: 

typedef struct train_Data 

 

{ 

 

vector<token_table> trainTable; 

 

int non_spam_word; 

 

int spam_word; 

 

}train_Data; 

 

The fields ‘spam_word’ and ‘non_spam_word’ are 

integer variables used to store the number of spam and 

non-spam messages used to train the train database. The 

vector holds tokens along with the fields specified in 

‘token_table’. 

First messages in non-spam category are loaded and 

then messages in spam category. These processes are 

handled by function: 

loadTrainDataSpam() 

 

loadTrainDataHam() 

after the tokens in spam and non-spam messages are 

parsed and populated along with their frequency in spam 

and non-spam messages. The next step is calculating the 

probability and spamicity of each token. The function 

which calculates these values is: 

calculateProbability() 

This function takes the values populated by the previous 

function, loadTrainDataSpam() and loadTrainDataHam(). 

These three functions use the formulas listed above, 

Equation1, Equation2 and Equation3. 

Loading training messages involves adding the parsed 

tokens in to the train_table. For such functions I used the 

function: 

add_token_ham(token) 

 

Fig.2: Filter processing 

 

Next, I’m gone to let the filter try to decide if a message 

is spam or not, based on what we’ve told it about what 

spam looks like and how it differs from non-spam. Let’s 

pretend a mail message is sent to the filter, which looks 

like this: 

“Tanni kehini nena sikio gayitanawu koiko hachi tawu 

silikia shocha” 

The filter scans through the message, creating a list of 

every word it knows about (in other words, every word in 

the message that’s also in the token databases). Once the 

filter has the list of words it knows about, for each word it 

calculates the probability that the word appears in spam 

based on the frequency data in the token databases. 

V. TESTING AND EVALUATION OF THE NEW SYSTEM 

This section provides the performance assessment of the 

spam filter followed by testing the adequacy of the system. 

 

The filter takes as input a directory with email messages 

(both spam and non-spam) for testing the filter specified 

by the user. In order to use the program and test some 

messages a user requires: 

I. A directory\folder with spam messages used to train 

the filter 

II. A directory\folder with non-spam messages used to 

train the filter 

III. A directory\folder with messages (both spam and non-

spam) for testing the filter 

The program continues well and shows all train 

database and the result for the tested messages. It filters

 the message as spam and non-spam

 and shows the result as follows: 

Fig 3: Processing Spam File  
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Most of developers of this system train and evaluate 

their system with thousands of messages. But for this case 

due to unavailability of Wolaytta text, I translate some 

messages and try to evaluate on the texts that I trained the 

system and with some more. To evaluate the filter’s 

performance, I performed the following test case: 

The inbox contains 10 email messages: 5 spams and 5 

non-spams. 

 Total number of email messages: 10 

 Total number of non-spam messages: 5 

 Total number of spam messages: 5 

 Total number of email messages classified as 

non-spam: 5 

 Total number of email messages classified as 

spam: 5 

 Total number of non-spam messages classified as 

spam messages: 0 

 Total number of spam messages classified as non-

spam messages: 0 

 Accuracy: 100% 

This doesn’t show precisely the accuracy of the system 

as if it is trained with small number of training sets and 

small number of testing sets of data. 

 

VI. CONCLUSION 

As we have experienced, most of the email messages 

that are sent for us daily are spam. According to different 

researchers among the existing different techniques used 

for text classification, Bayesian analysis filters spam with 

high accuracy. 

Here I tried to develop a Bayesian spam filter using 

C++ programming language. I read different articles to 

understand the Bayesian filtering technique and I 

developed a system that is capable to do filtering messages 

as spam and non-spam. What we need to do on the system 

is to train once and we are done. After training the filter, it 

becomes capable of filtering spam with high accuracy as 

shown in the evaluation section. 
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