
International Journal of Advanced Engineering Research and Science (IJAERS) [Vol-6, Issue-12, Dec- 2019]

https://dx.doi.org/10.22161/ijaers.612.64 ISSN: 2349-6495(P) | 2456-1908(O)

www.ijaers.com Page | 540

Bayesian Spam Filter for Wolaytta
Tewodros Abebe

Computer Science, Wolaita Sodo University, Ethiopia
teddy4students@gmail.com

Abstract— The increasing volume of spam has become a serious threat not only to the Internet, but also to

society. This paper presents a C++ code to implement a spam filtering based on the use of Bayesian spam

filtering for Wolaytta text. Our experiments indicate that using this approach to filter spam e-mails is a good

approach for languages like Wolaytta.

Keywords — Spam filter, Naïve Bayesian classification, Wolaytta.

I. INTRODUCTION

With the advancement in electronic and computer

technology there is an explosive growth in the use of

computers for processing information. In today’s

computer-connected society, among the existing forms of

communication email has become the fastest and most

economical form of available communication.

According to recent surveys, 60% of all e-mail traffic is

spam [1]. In this way a great amount of bandwidth is

wasted and the e-mail systems are overloaded. Due to the

above serious problems, measures must be taken to deal

with the spam phenomenon. The best such measure has

proven to be spam filtering.

This paper demonstrates the use of Bayes’ formula in

filtering spam messages of Wolaytta text. Achieving the

goal for local languages like Wolaytta would also provide

novel knowledge about cognition, understanding, and

mechanism of spam filtering with the possibility of

considering some of the features of the language.

II. BAYESIAN PROBABILITY

Bayesian probability is one of the major theoretical and

practical frameworks for reasoning and decision making

under uncertainty [2]. The historical roots of this theory lie

in the late 18th, early 19th century, with Thomas Bayes [2]

and Pierre-Simon de Laplace [3]. It was “forgotten” for a

long time, and began to be re-appreciated in different

application domains, during various periods of the 20th

century. Hence, Bayesian probability was never developed

as one single, homogeneous piece of scientific activity.

Bayesian concepts, methods and solutions for different

applications became known for decades under various

names: the Bayesian approach to uncertainty reasoning,

Bayesianism, the Bayesian framework, the Bayesian

paradigm, plausible inference, and Bayesian reasoning

A. Bayes’ Formula

In basic terms, Bayes’ Formula allows us to determine

the probability of an event occurring, based on the

probabilities of two or more independent evidentiary

events [4]. Mathematically, the general formula is

represented as: P(Ej|F)

Assuming that the variables a and b are the probabilities

of two evidentiary events, the probability would be equal

to:

For three evidentiary events a, b, and c, the formula

expands so the probability is equal to:

In this fashion, the formula can be expanded to

accommodate any number of evidentiary events. The

Bayes formula lets us combine the probability of multiple

independent events into one number with a range of 0.0 to

1.0. Here the Bayes’ formula is used to figure out the

probability that a message is spam based on the words

appearing in it.

The block diagram below in figure 1 shows how the

spam filter module is designed. The goal of the filter

program is to filter spam messages as it occurs as a

legitimate mail message. The program takes data to train

the train_data_table, a table which is used to store words

(tokens) that appear in spam and non-spam messages along

with their frequency both in spam and non-spam messages.

It also has columns that hold calculated values of

probability and spamicity. The filter:

I. Parses each word in sample spam and legitimate

(non-spam) messages. These messages are used to

train the filter with possible tokens that appear in

spam message.

https://dx.doi.org/10.22161/ijaers.612.64
http://www.ijaers.com/
mailto:teddy4students@gmail.com

International Journal of Advanced Engineering Research and Science (IJAERS) [Vol-6, Issue-12, Dec- 2019]

https://dx.doi.org/10.22161/ijaers.612.64 ISSN: 2349-6495(P) | 2456-1908(O)

www.ijaers.com Page | 541

II. For each token it uses its frequency both in spam

and legitimate messages. The frequency is then

used to calculate the probability of each token

being as it being appears in spam and legitimate

messages.

III. The calculated probability then yields the spamicity.

Fig. 1: Spam Filter Module

The first thing we need to do is to provide the filter with

a couple of spam and legitimate messages. This will allow

the filter to train itself the difference between spam and

non-spam messages. When we humans accidentally read a

spam message, we almost immediately recognize it as

spam because of certain key words (such as “viagra” and

“mortgage”) or phrases (such as “Get your free porn

here!”). Instinctively, we know that a message containing

these words or phrases is spam because of our experience

in dealing with junk mail. The opposite is true as well. We

can almost instantly look at a message from our mother

(containing phrases such as “When are you going to get

married so I can have grandchildren?”) or our boss

(containing phrases such as “Less computer solitaire and

more work if you want a paycheck this Friday”) and know

they’re not spam.

III. WOLAYTTA LANGUAGE

Wolaytta is an Omotic language family which is a

branch of the Afro-Asiatic language phylum spoken in the

Wolaytta Zone and some parts of the Southern Nations,

Nationalities, and People’s Region of Ethiopia [6]. The

term ‘Wolaytta’ is used as the name by which the people

refer to themselves, their region and their language. The

Wolaytta language is written in the Latin alphabet. It is

one of the languages known as it has complex morphology.

IV. THE SYSTEM (BAYESIAN FILTER)

The system developed here implements the Bayes’ filter.

It is named ‘Wolaytta_Spam_Filter’. To develop the

system, I used C++ programming language that I am

familiar with. The system uses a single table (vector) to

store tokens that are supposed to be both in spam and non-

spam messages. The messages are written in Wolaytta.

A. Training Data

The more we train our filter the more it will become

accurate. We “train” the filter by showing it a bunch of

mail messages, and telling it whether the message is spam.

Whenever we show a message to the filter, it finds every

word in the message and stores it (along with how many

times it occurred) in a database.

To train the system I translated the most familiar spam

messages occur in English to Wolaytta text and give the

system the text in .txt file format. This due to the problem

of inaccessibility of any written text for this language in

Examples of the spam and non-spam messages used for

the training ‘Wolaytta_Spam_Filter’ are listed below.

Table I: Sample Spam and Non-Spam messages of

Wolaytta

Spam and Non-Spam messages

Spam Messages

1. Tanni kehini nena sikio gishawu tannara

gayitanawu koiko hachi tawu silikia shocha. Ta

nena dossiyoo gishsha ta neyoo kittido ta

pootuwan beada ne tana dossiko tayoo neeni

silkkiyaan tani neeko yaada nenaara gayttana.

2. Dvyaa Lotoriyaa gakanadani koiko tayo

nenni birra bankirra yedana mala tomooseyis.

Hega otanawu ne koiko tanni niyo esuwara

polissada nena America bitta yedana. Nena dvyaa

qaaday gakkido gishaw, ne bankkiyaa payduwaa

nussi issi agnnaa gakkanaashin eesuwan xaafa. Ne

hegaa xaafa simishiin nu neyoo nena ekkida giya

woraqataa yedana.

Non Spam Messages

1. Tani issi shanne uddppu xeetane eudpu

tamanu marotetaa layttan yeletasi. Hega gioge ta

layitai hae eshattamapee aleissi gioga. La Taddalla

aymala deay waanada xayadii? Ne ossoy aymalee?

Ne naati ubbayka saroo? Ne siiqo machchiyaa

aymalee? Taani neeko mata wodiyaan yaana.

Hegee gakkanaashin saro dea.

2. Ha gidooni intte ooso keettay oosanchchasi

oorata oosuwan qadaa kessidogaa kessidoogaa

siyaasi shiinawude gakkanawu takii? Ubbankka

neesi wontto silkkiaa shoccana. Saro taka

For training purpose, the filter takes tokens both form

spam and non-spam messages. For this project I used 4

spam and 4 non-spam messages for training purpose. The

messages listed above only show the content of the

messages.

Here I used Wireshark, a network analysis tool, for

capturing the actual messages as if it is sent through E-

Mail. While sending the E-Mail Wireshark uses http

protocol and hence, I extracted the content of the messages

from the raw packets. During spam filtering the main focus

is on the actual message content so that other parts of the

https://dx.doi.org/10.22161/ijaers.612.64
http://www.ijaers.com/

International Journal of Advanced Engineering Research and Science (IJAERS) [Vol-6, Issue-12, Dec- 2019]

https://dx.doi.org/10.22161/ijaers.612.64 ISSN: 2349-6495(P) | 2456-1908(O)

www.ijaers.com Page | 542

message such as Header parts are not important to be listed

here in training data. As a result, the header and body

fields along with their values are not included in the

message texts listed above.

All title and author details must be in single-column

format and must be centered.

The messages are hence used to populate the filter table.

The probabilities are calculated using an easy probability

formula used to compute the probability value. In order to

calculate the probability of each token the filter use the

frequency of the token as it appears on spam and non-spam

messages. The values of the calculated probabilities are

used to compute the spamicity of a given token.

This probability value assigned to each word is

commonly referred to as spamicity, and ranges from 0.0 to

1.0. If spamicity value for a given word is greater than 0.5

then the message containing the word/token is likely to be

spam, while a spamicity value less than 0.5 indicates that a

message containing the word is likely to be ham (non-

spam). A spamicity value of 0.5 is neutral, meaning that it

has no effect on the decision as to whether a message is

spam or not.

Some spam filtering applications use a separate table for

spams and non-spam messages. Here I used a common

table for both spam and non-spam messages. This

approach is easy for reading the values that correspond to a

particular token. A count of messages used for training is

also kept on the database to calculate the probabilities.

Table II: Sample Spam and Non-Spam messages of

Wolaytta

Token

Spam

frequency

 Non-

spam

frequency

Pr(spam)

Pr(non-

spam) Spamicity

Tanni 4 0 1 0 1

Kehini 1 0 0.25 0 1

Nena 3 0 0.75 0 1

Aleissi

0

 1 0 0.25 0

Hega 1 1 0.25 0.25 0.5

Nyio 2 0 0.5 0 1

The implementation of the filter to create the above

train database uses the following structures:

typedef struct token_table

{

string word;

int id;

int non_spam_freq;

int spam_freq;

float ps;

float pns;

float spamicity;

}token_table;

The “token_table” is a structure used to hold tokens

parsed for spam and non-spam messages. Non-spam and

spam fields store integer values that tell the number of

appearances of a word in spam and non-spam messages.

These values are used for finding the probabilities of each

word that exists within the messages.

Once the Bayesian filter has the list of tokens in the

table, it searches the spam and non-spam tokens databases

for these tokens. These databases of tokens are created and

updated whenever the Bayesian filter is “trained” on a new

message. This implies training only requires messages that

are supposed to be spam and non-spam.

If a token from the message is found in the databases,

the Bayesian filter calculates the token’s spamicity based

on the following variables:

I. The frequency of the token in spam messages that

the filter has been trained on

II. The frequency of the token in ham messages that

the filter has been trained on

III. The number of spam messages the filter has been

trained on

IV. The number of ham messages the filter has been

trained on

The algorithm used to calculate a token’s spamicity

from these pieces of information is as follows:

Equation 1

https://dx.doi.org/10.22161/ijaers.612.64
http://www.ijaers.com/

International Journal of Advanced Engineering Research and Science (IJAERS) [Vol-6, Issue-12, Dec- 2019]

https://dx.doi.org/10.22161/ijaers.612.64 ISSN: 2349-6495(P) | 2456-1908(O)

www.ijaers.com Page | 543

Equation 2

If either Ham probability or Spam probability are

greater than 1.0, it sets them equal to 1.0.

Equation 3

The structure used to store the tokens along with their

structure members are shown below:

typedef struct train_Data

{

vector<token_table> trainTable;

int non_spam_word;

int spam_word;

}train_Data;

The fields ‘spam_word’ and ‘non_spam_word’ are

integer variables used to store the number of spam and

non-spam messages used to train the train database. The

vector holds tokens along with the fields specified in

‘token_table’.

First messages in non-spam category are loaded and

then messages in spam category. These processes are

handled by function:

loadTrainDataSpam()

loadTrainDataHam()

after the tokens in spam and non-spam messages are

parsed and populated along with their frequency in spam

and non-spam messages. The next step is calculating the

probability and spamicity of each token. The function

which calculates these values is:

calculateProbability()

This function takes the values populated by the previous

function, loadTrainDataSpam() and loadTrainDataHam().

These three functions use the formulas listed above,

Equation1, Equation2 and Equation3.

Loading training messages involves adding the parsed

tokens in to the train_table. For such functions I used the

function:

add_token_ham(token)

Fig.2: Filter processing

Next, I’m gone to let the filter try to decide if a message

is spam or not, based on what we’ve told it about what

spam looks like and how it differs from non-spam. Let’s

pretend a mail message is sent to the filter, which looks

like this:

“Tanni kehini nena sikio gayitanawu koiko hachi tawu

silikia shocha”

The filter scans through the message, creating a list of

every word it knows about (in other words, every word in

the message that’s also in the token databases). Once the

filter has the list of words it knows about, for each word it

calculates the probability that the word appears in spam

based on the frequency data in the token databases.

V. TESTING AND EVALUATION OF THE NEW SYSTEM

This section provides the performance assessment of the

spam filter followed by testing the adequacy of the system.

The filter takes as input a directory with email messages

(both spam and non-spam) for testing the filter specified

by the user. In order to use the program and test some

messages a user requires:

I. A directory\folder with spam messages used to train

the filter

II. A directory\folder with non-spam messages used to

train the filter

III. A directory\folder with messages (both spam and non-

spam) for testing the filter

The program continues well and shows all train

database and the result for the tested messages. It filters

 the message as spam and non-spam

 and shows the result as follows:

Fig 3: Processing Spam File

https://dx.doi.org/10.22161/ijaers.612.64
http://www.ijaers.com/

International Journal of Advanced Engineering Research and Science (IJAERS) [Vol-6, Issue-12, Dec- 2019]

https://dx.doi.org/10.22161/ijaers.612.64 ISSN: 2349-6495(P) | 2456-1908(O)

www.ijaers.com Page | 544

Most of developers of this system train and evaluate

their system with thousands of messages. But for this case

due to unavailability of Wolaytta text, I translate some

messages and try to evaluate on the texts that I trained the

system and with some more. To evaluate the filter’s

performance, I performed the following test case:

The inbox contains 10 email messages: 5 spams and 5

non-spams.

 Total number of email messages: 10

 Total number of non-spam messages: 5

 Total number of spam messages: 5

 Total number of email messages classified as

non-spam: 5

 Total number of email messages classified as

spam: 5

 Total number of non-spam messages classified as

spam messages: 0

 Total number of spam messages classified as non-

spam messages: 0

 Accuracy: 100%

This doesn’t show precisely the accuracy of the system

as if it is trained with small number of training sets and

small number of testing sets of data.

VI. CONCLUSION

As we have experienced, most of the email messages

that are sent for us daily are spam. According to different

researchers among the existing different techniques used

for text classification, Bayesian analysis filters spam with

high accuracy.

Here I tried to develop a Bayesian spam filter using

C++ programming language. I read different articles to

understand the Bayesian filtering technique and I

developed a system that is capable to do filtering messages

as spam and non-spam. What we need to do on the system

is to train once and we are done. After training the filter, it

becomes capable of filtering spam with high accuracy as

shown in the evaluation section.

REFERENCES

[1] Fetterly, Dennis, Mark Manasse, and Marc Najork. "Spam,

damn spam, and statistics: Using statistical analysis to

locate spam web pages." Proceedings of the 7th

International Workshop on the Web and Databases:

colocated with ACM SIGMOD/PODS 2004. ACM, 2004.

[2] Bayes, T. (1958). Essay towards solving a problem in the

doctrine of chances. Biometrika, 45, 293-315.

[3] Bruyninckx, H. (2002). Bayesian probability. CiteSeer, não

publicado em con, 81.

[4] Metsis, V., Androutsopoulos, I., & Paliouras, G. (2006,

July). Spam filtering with naive bayes-which naive bayes?.

In CEAS (Vol. 17, pp. 28-69).

[5] Lamberti, M., & Sottile, R. (1997). The Wolaytta

Language (pp. 665-665). Rüdiger Köppe Verlag.Wireless

LAN Medium Access Control (MAC) and Physical Layer

(PHY) Specification, IEEE Std. 802.11, 1997.

[6] Wakasa, M. (2014). A sketch grammar of Wolaytta. Japan

Association for Nilo-Ethiopian Studies.

https://dx.doi.org/10.22161/ijaers.612.64
http://www.ijaers.com/

