
International Journal of Advanced Engineering Research and Science (IJAERS) [Vol-7, Issue-3, Mar- 2020]

https://dx.doi.org/10.22161/ijaers.73.34 ISSN: 2349-6495(P) | 2456-1908(O)

www.ijels.com Page | 206

Revisiting Cook-Levin theorem using NP-

Completeness and Circuit-SAT

Edward E. Ogheneovo

Department of Computer Science, University of Port Harcourt, Port Harcourt, Nigeria.

Abstract— Stephen Cook and Leonard Levin independently proved that there are problems called NonPolynomial-

complete (NP-complete) problems. The theorem is today referred to as Cook-Levin theorem. The theorem states that

Boolean satisfiability problem is NP-complete. That is to say, any problem in NP can be reduced in polynomial time

by a deterministic Turing machine to the problem of determining whether a Boolean formula is satisfiable.

Therefore, if there exists a deterministic polynomial time algorithm for solving a Boolean satisfiability, then there

exists a deterministic polynomial time algorithm for solving all problems in NP. Thus Cook-Levin theorem provides

a proof that the problem of SAT is NP-complete via reduction technique. In this paper, we revisit Cook-Levin

Theorem but using a completely different approach to prove the theorem. The approach used combines the concepts

of NP-completeness and circuit-SAT. Using this technique, we showed that Boolean satisfiability problem is NP-

complete through the reduction of polynomial time algorithms for NP-completeness and circuit-SAT.

Keywords— Cook-Levin, Boolean satisfiability, circuit-SAT, NP-complete, polynomial time.

I. INTRODUCTION

In the 1970s, Stephen Cook and Leonard Levin

independently discovered that there are problems in NP

whose complexities are related to all other problems in NP.

Those problems are called NP-complete problems [1] [2].

Cook-Levin theorem states that Boolean satisfiability

problem is NP-complete. That is to say, any problem in NP

can be reduced in polynomial time by a deterministic Turing

machine to the problem of determining whether a Boolean

formula is satisfiable [3]. Thus if there exists a deterministic

polynomial time algorithm for solving a Boolean

satisfiability, then there exists a deterministic polynomial

time algorithm for solving all problems in NP. Therefore, the

question of whether such an algorithm exists is called the P

versus NP problem. However, it must be noted that the P vs

NP problem is considered the most important unsolved

problem in theoretical computer science [4] [5].

A deterministic computer is a machine that can solve a

problem and provide correct answer whereas a non-

deterministic computer is the one that can “guess” the right

answer or solution. If a solution exists, computers will

always guess it. One way to imagine it is by using a parallel

computer that can freely spawn an infinite number of

processes by using one processor on each possible answer or

by using a machine in which all the processors try to verify

that their solution works especially if a processor finds out

that it has a working solution [6] [7] .NP can also be thought

of as the class of problems 1) whose solutions can be verified

in polynomial time, or (2) that can be solved in polynomial

time on a machine that can pursue infinitely many paths of

the computation in parallel. However, there also exist

problems which are not NP. If a solution is known to NP-

complete it can be reduced to single polynomial-time

verification. A problem is NP-complete if it is NP and an

algorithm for solving it is translated into one for solving any

other NP-problem. There are many complexity classes that

are much harder than NP. These include: PSPACE,

EXPTIME, and undecidable problems [8] [9]. It is widely

believed that P ≠NP. The question then is this: “Is P = NP?

However, despite the wide belief, it has not been logically

proved that P =NP. P implies polynomial time solvable

while NP can be used to verify the correctness of a solution

in polynomial time. Mathematically, it has not been

established anywhere in literature that P = NP, although in

recent times, modern mathematically equivalent definitions

via efficient verification of purported solutions have been

established.

https://dx.doi.org/10.22161/ijaers.73.34
http://www.ijels.com/

International Journal of Advanced Engineering Research and Science (IJAERS) [Vol-7, Issue-3, Mar- 2020]

https://dx.doi.org/10.22161/ijaers.73.34 ISSN: 2349-6495(P) | 2456-1908(O)

www.ijels.com Page | 207

Thus Cool-Levin theorem provides a proof that the problem

of SAT is NP-complete via reduction technique. Using the

notion of reducibility of one problem to another, we say that

a problem B can be reduced to A, 𝐵 ≤𝑝 𝐴 if given access to

a solution A, we can solve B in polynomial time using

polynomial many calls to this solution for A. The notion of

reducibility is very important to completeness of a problem

for a class. If a problem L ∈ NP satisfies that for L1∈ NP

satisfies that for proving NP-completeness by using Karp

reduction.

II. THE P VS NP PROBLEM

A problem is said to be a polynomial problem if the number

of steps needed to solve it is bounded by some power of the

problem’s size. Polynomial-time is one of the most

fundamental complexity classes. It contains all decision

problems that can be solved by a deterministic Turing

machine in polynomial-time. That is, it is the class of

decision problems that can have polynomial-time

deterministic algorithms. Thus an algorithm exists for its

solution such that the number of steps in the algorithm is

bounded by a polynomial function of n, where n represents

the length of the input for the problem. Hence, polynomial

problems are said to be easy or tractable (i.e., a class of

problem that is efficiently solvable) [10].

Definition:A problem ispolynomial-time if the number of

steps required to complete the algorithm for a given input is

O(nk) for some non-negative integer k, where n is the

complexity of the input.

Therefore, the class of P-problems is a subset of the class of

NP-problems.An algorithm is said to be solvable in

polynomial-time if the number of steps required to complete

the algorithm for a given input is O(nk) for some non-

negative integer k, where n is the complexity of the input.

Most mathematical operations such as addition, subtraction,

multiplication, and division, as well as computing square

roots, power, and logarithms, can be performed in

polynomial time. It must be noted that computing the digits

of most interesting mathematical constants, including 𝜋 and

e, can also be done in polynomial time [11] [12]. On the

other hand, a problem is said to be NP-problem if it permits a

nondeterministic solution and the number of steps to verify

the solution is bounded by some power of the problem’s size.

They are class of decision problems that is solvable in

polynomial-time on a nondeterministic machine or with a

non-deterministic algorithm where non-deterministic simply

means “guessing” a solution. A problem is in NP if a

solution exists. Problems in NP are relatively easy if and

only if we could “guess” the right solution, we could quickly

test it [13] [14].

2.1 NP-Completeness

NP-complete problem is very important in the study of

algorithms. The important thing about NP complexity class is

that problems within that class can be verified by a

polynomial time algorithm. A problem is classified as NP-

complete if it can be shown that it is both NP-Hard and

verifiable in polynomial time. However, there are some

problems in which polynomial time solutions do not exist.

NP-complete problems are a set of problems in which any

other NP-problem can be reduced in polynomial time, and

whose solution may still be verified in polynomial time.

Problems in polynomial-time are said to be tractable these

problems are because solvable and their solutions can be

shown. NP-complete problems cannot be solved in

polynomial time in any known way. They are therefore

referred to as intractable problems. Examples of NP-

complete are include the Hamilton Cycle and traveling

salesman problems [15].A problem is said to be NP-complete

when it is both in NP and NP-hard. An NP-complete problem

encodes simultaneously all problems for which a solution

can be efficiently recognized (i.e., a “universal problem”).

The question is: can such a problem really exist? Cook [16]

and Levin [17] both independently showed in their works

that NP-complete problems exist. Also, Therefore, it is

difficult to determine whether or not it is possible to solve a

problem quickly in polynomial time. The NP-completeness

can be thought of as a way of making the big P = NP

question equivalent to smaller questions about the hardness

of individual problems. Therefore, if we believe that P ≠NP,

and we are able to prove some problem is NP-complete, then

such a problem does not have a fast algorithm.

Definition: A problem X is NP-complete if 1) X is in NP, and

2) every problem in NP is reducible to X in polynomial time.

X can be shown to be NP by demonstrating that a candidate

solution to C can be verified in polynomial time.That is, a

problem is NP-complete if it is NP and an algorithm for

solving it is translated into one for solving any other NP-

problem

NP-complete problems are defined in a precise sense as the

hardest problems in polynomial time. Although, as stated

https://dx.doi.org/10.22161/ijaers.73.34
http://www.ijels.com/

International Journal of Advanced Engineering Research and Science (IJAERS) [Vol-7, Issue-3, Mar- 2020]

https://dx.doi.org/10.22161/ijaers.73.34 ISSN: 2349-6495(P) | 2456-1908(O)

www.ijels.com Page | 208

earlier, it has not been proved that there is any problem in NP

that is not in P. However, we can point to an NP-complete

problem and say that if there is any hard problem in NP, that

problem is one of the hard ones. Conversely, if everything in

NP is easy, those problems are easy. NP-complete problems

are in NP. That is, the set of all decision problems whose

solutions can be verified in polynomial time. NP problems

can be defined as the set of decision problems that can be

solved in polynomial time using a non-deterministic Turing

machine. A problem p in NP is NP-complete if every other

problem in NP can be transformed (or reduced) into p in

polynomial time.

III. THE CIRCUIT-SAT

[The circuit-SAT (CSAT) [21]is a decision problem of

determining if a given Boolean circuit has an assignment of

its inputs that makes the output true. That is, it asks whether

the inputs to a given Boolean circuit can be consistently set

to 1 or 0 such that the circuit outputs 1. If this is the case, the

circuit is said to be satisfiable. Otherwise, the circuit is

unsatisfiable. Thus the circuit-SAT asks that given a Boolean

circuit C, is there is an assignment to the variables that

causes the circuit to output 1?

3.1 Satisfiability Problem

The SATISFIABLE (SAT) problem is the problem of

determining if there exists an interpretation that satisfies a

given Boolean formula. SAT is the problem of deciding if

there is an assignment to the variables of a Boolean formula

such that the formula is satisfied [18]. That is, SAT try to

find out if the variables of a given Boolean formula can be

consistently replaced by the values TRUE or FALSE such

that the formula evaluates to TRUE. If this can be

established, then the formula is said to be satisfiable

otherwise it is unsatisifiable. For example, a SAT problem

can look as follows:

 (a ∨ b ∨ c) (a ∨ 𝒃) (b ∨c) (c ∨a) (a∨b v c)

The above is a Boolean formula in conjunctive normal form

(CNF). The formula contains a collection of clauses (in

brackets), with each clause consisting of the disjunction

(logical or (denoted V)) of several Boolean variables such as

(a) or negations of one such as (b). A SAT assignment must

evaluate to true or false. The SAT problem is: Given a

Boolean formula in conjunctive normal form, either find a

satisfying truth assignment or else report that none exists.

Thus the main idea about SAT is that an expression exists in

conjunctive normal form, which is a way of saying that there

are a series of expressions joined by ORs that must be

TRUE. For example:

(a ∨b) AND (b ∨c) AND (d ∨e∨ f)

Definition:A Boolean 𝜑formula is defined over a set

ofproposition variablesx1, …, xn, using the standard

propositional connectives ∼, ∨, ∧, →, ↔ and parenthesis. The

domain of propositional variables is {0, 1}.

Definition: A formula 𝜑 in conjunctive normal form (CNF)

is a conjunction of disjunctions (clauses) of literals, where a

literal is a variable or its complement. A formula is satisfied

if all its clauses are satisfied. A formula is unsatisfied if at

least one of its clauses is unsatisfied.

3.2 The 2-Satisfiability (2-SAT) Problem

The 2-satisfiability (2-SAT) problem can be described as the

problem of determining whether a collection of Boolean

variables with constraints on pairs of variables can be

assigned values satisfying all the constraints. The “2” in this

name stands for the number of literals per clause, and “SAT”

stand for satisfiable, a type of Boolean expression. 2-SAT is

a special case of the general SAT problem and can be solved

in polynomial time (i.e., tractable problems) in which the

running time is upper bounded by a polynomial expression in

the size of the input for the algorithm in which T(n) = O(nk)

for some constant k. Generalized SAT problems involve

constraints on more than two variables, and of constraint

satisfaction problems, which can allow more than two

choices for the values of each variable[19] [20] .

2-SAT problems are examples of NL-complete problems,

i.e., problems that can be solved non-deterministically using

a logarithmic amount of storage.NL-complete problems are

among the hardest and the most difficult solvable problem in

computer resource bound. A 2-SAT problem can be

described using a Boolean expression with a special

restricted form: a conjunction or disjunctions, where each

operation has two arguments that may either be variables or

the negations of variables. These variables or their negations

appearing in this formula are referred to as literals and the

disjunctions of pairs of literals are referred to as clauses. As

an example, consider the following conjunctive normal form

(CNF), having seven variables (i.e., x0, x1, …, x6) and eleven

clauses.

(x0∨x2) ∧(x0∨ ~x3) ∧(x1∨ ~x3) ∧(x1∨ ~x4) ∧(x2∨ ~x4)

∧(x0∨ ~x5) ∧

(~x1∨ ~x5) ∧(x2∨ ~x5) ∧(x3∨x6) ∧(x4∨x6) ∧(x5∨x6)

https://dx.doi.org/10.22161/ijaers.73.34
http://www.ijels.com/

International Journal of Advanced Engineering Research and Science (IJAERS) [Vol-7, Issue-3, Mar- 2020]

https://dx.doi.org/10.22161/ijaers.73.34 ISSN: 2349-6495(P) | 2456-1908(O)

www.ijels.com Page | 209

Figure 1 shows an example of the use of literals and clauses

in determining the truth or falsity of an assignment

statement. Thus the SAT problem is a problem for

determining a truth assignment to these variables that makes

a formula of this type true: we must choose whether to make

each of the variables true or false, so that the assignment sets

at least one literal to true in every clause.

Fig. 1: An example of the use of literals and clauses.

One possible satisfying assignment for the expression above

is the one that set all seven of the variables to true. Thus the

2-SAT instance represented by the expression is satisfiable.

Formulas of the form described above are called 2-CNF

formulas: the “2” in this name stands for the number of

literals per clause, and “CNF” stand for Conjunctive Normal

Form, a type of Boolean expression in the form conjunction

of disjunctions. Each clause in a 2-CFN formula is logically

equivalent to an implication from one variable or negated

variable to the other. For example,

(x0∨ ~x3) ≡ (~x0⟹ ~x3) ≡(x3 ⟹ x0)

However, it must be noted that a 2-SAT instance may be

written in implicative normal form because of the

equivalence between these different types of operations. In

this case, each operation is replaced in the CNF by both of

the two implications to which it is equivalent. The 2-SAT

can also be explained using graphical illustration by using

implication graph. An implication graph is a directed graph

in which there is one vertex per variable or negated variable,

and an edge connecting one vertex to another whenever the

corresponding variables are related by an implication in the

implicative normal form of the instance. The implication

graph is skew-symmetric directed graph G(V, E) having

vertex set V and directed edge E. In this graph, each vertex

in V represents the truth status of a Boolean literal, and each

directed edge from vertex u up vertex v represents the

material implication. An instance is satisfiable if and only if

no literal and its negation belong to the same strongly

connected component of its implication graph, which can be

used to solve 2-SAT instances in linear time [21].

3.3 3-SAT

The 3-SAT is a special case of SAT that is very useful in

proving NP-hardness results. It is so called because it has 3

literals in each of its clauses [22]. The 3-SAT problem is

used to find a solution that will satisfy the expression where

each of the OR-expressions has exactly 3 Booleans.

 (x1∨ 𝒃 ∨c) and (a ∨ 𝒃 ∨ 𝒅) and (b ∨c v d)

A solution to this logical statement might be (a = T, b = T, c

= F, d = F). Thus the best way to solve this problem is to use

a guess and check method by trying different combinations

until match that work is formed. Recall that a Boolean

formula is in conjunction normal form (CNF) if it is a

conjunction (AND) of several clauses, each of which is the

disjunction (OR) of several literals, each of which is either a

variable or its negation. For example,

(x1∨x2∨x3∨x4) ∧ (x2∨∼x3∨∼x4) ∧

(∼x1∨x3∨x4) ∧ (x1∨ ∼ x2).

Theorem (Cook-Levin): SAT is NP-complete

Proof

Cook-Levin theorem states that any problem in NP can be

solved in polynomial-time by a non-deterministic Turing

machine. Therefore, by definition of NP-complete, it will be

https://dx.doi.org/10.22161/ijaers.73.34
http://www.ijels.com/

International Journal of Advanced Engineering Research and Science (IJAERS) [Vol-7, Issue-3, Mar- 2020]

https://dx.doi.org/10.22161/ijaers.73.34 ISSN: 2349-6495(P) | 2456-1908(O)

www.ijels.com Page | 210

necessary to first show that SAT is in NP and also show that

SAT is in NP-Hard. Consider Turing machine RAM t = 0, 1,

2, …, O(n2) having a read-only memory, program, and

read/write memory respectively as shown in figure 1.

Fig. 2: A Turing machine having read-only memory, program, and read/write memory respectively

[Now consider the Boolean Formula:

(x1∨x2 x3∨x4∨x5∨x6) ∧

(x1∨ (𝑥2 𝑥3 ∨ 𝑥4 ∨ 𝑥5 ∨ 𝑥6̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅)) ∧

[

Fig. 3: A Turing machine with read/write memory

time steps read – only memory

- - -- -

- - . -

-

- - … -

~ ~ ~ ~

~ ~ ~ ~

program read/write memory

t = 0

t = 1

t = 2

t = 0(n2)

00

~ ~ ⋯ ~

~ ~ ~ ~ ~ ~

SNAPSHOT

Each Snapshot has size

polynomial in n

There as be an exponential

member of Snapshots

All Snapshots together

have polynomial size

~ ~ ⋯ ~

0

0

0

0

0

1

1

1

1

1

2

2

2

2

2

c

c

c

c

c

0
0
0
0
0
0
0
0
0
0
0

~ ~ ~ ~

0

0

0

0

0

1

1

1

1

1

2

2

2

2

2

c

c

c

c

c

Polynomial in n

Polynomial in n

C
o

n
st

an
t

C
o

n
st

an
t

C
o

n
st

an
t

Input (read only) Program Read/write memory

https://dx.doi.org/10.22161/ijaers.73.34
http://www.ijels.com/

International Journal of Advanced Engineering Research and Science (IJAERS) [Vol-7, Issue-3, Mar- 2020]

https://dx.doi.org/10.22161/ijaers.73.34 ISSN: 2349-6495(P) | 2456-1908(O)

www.ijels.com Page | 211

Fig. 4: A RAM machine for solving SAT problem

It must be noted that no restrictions are placed on the number of literals in each of a CNF formula. Also, a formula is said to be a

CNF formula if it is the case that is a CNF formula with exactly three literals in each clause.

Fig. 5: A snapshot of the Boolean formula

Charge every gate clause into a CNF formula. There are only

three types of clauses, one for each type of gate:

 x1 = x2 ∧x3 → (x1∨∼x2∨∼x3) ∧ (∼x1∨x2) ∧ (∼x1∨x3)

 x1 = x2 ∨ x3 → (∼x1∨x2∨x3) ∧ (x1∨∼x2) ∧ (x1∨∼x3)

 x1 = x2 → (x1∨x2) → (∼x1∨∼x2)

iv). Ensure that every clause has exactly three literals.

Introduce new variables into each one- and two-literals

clause, and expand it into two clauses as follows:

 (⋯) ∧ (⋯) ∧ (⋯) ∧ (⋯) ←

t = 0

t = 1

t = 0(nc)

(⋯) ∧ (⋯) ∧ (⋯) ∧ (⋯)

(⋯) ∧ (⋯) ∧ (⋯) ∧ (⋯)

Solve SAT for this for to learn

what the RAM does here.

Time RAM “Snapshot” Boolean Formula

x1 x1

x2 x2

x2

x3

𝑥4̅̅ ̅ 𝑥3̅̅ ̅

𝑥4̅̅ ̅

𝑥4̅̅ ̅ 𝑥1̅̅̅ 𝑥2̅̅ ̅

https://dx.doi.org/10.22161/ijaers.73.34
http://www.ijels.com/

International Journal of Advanced Engineering Research and Science (IJAERS) [Vol-7, Issue-3, Mar- 2020]

https://dx.doi.org/10.22161/ijaers.73.34 ISSN: 2349-6495(P) | 2456-1908(O)

www.ijels.com Page | 212

 x1 → (x1∨x∨ y) ∧ (x1∨∼x ∨ y) ∧ (x1∨x∨∼y) ∧

(x1∨∼x∨∼y)

 x1∨x2 → (x1∨x2∨x) ∧ (x1∨x2∨∼x).

For example, the formula is not a 3CNF formula, but the

following, but the following formula is:

 = (x2x3𝑥̅4)  (x1𝑥̅2𝑥̅3)  (x1x3x4) 

(𝑥̅1x2 x3)

Therefore, a Boolean formula  in the variables x1, . . . , xn

satisfiable if there exists a Boolean assignment for the

variables that cause the formula to evaluate to 1. For

example, both formulas  and C are satisfied: the

assignment x1 = 1, x2 = 2, x3 = 3, x4 = 0 works for both of

them.

Figure 6 shows a diagram for reducing circuit satisfiability to

formula satisfiability. The formula produced by the reduction

has a variable for each wire in the circuit

∅ = 𝑋10
1 ∧ (x10 ↔ (x7∧ x8∧ x9))

∧ (x9 ↔ (x6∨ x7))

∧ (x8 ↔ (x5∨ x6))

∧ (x7 ↔ (x1∧ x2∧ x4))

∧ (x6 ↔ (∼ x4))

∧ (x5 ↔ (x1∨ x2))

∧ (x4 ↔ x6)

Fig. 6: A typical Circuit-SAT

This shows that it is satisfied and it is an NP-complete

problem

x10 = (x7x8x9) = (x1x2x4)  (x5x6)  (x6x7)

= (x1x2𝑥̅3)  (𝑥̅4 (x1x2)) 𝑥̅4 (x1x2))  (x4 (x4x1x2)

Using inductive method, we have

x y x  y

1 1 1

1 0 0

0 1 0

0 0 1

Therefore, x10 (x8x9x7)

X10 is true if and only if (x8x9x7)

IV. CONCLUSION

In this paper, we revisit Cook-Levin Theorem but using a

completely differ approach to prove the theorem. The

theorem states that Boolean satisfiability problem is NP-

complete. That is to say, any problem in NP can be reduced

in polynomial time by a deterministic Turing machine to the

problem of determining whether a Boolean formula is

satisfiable. Thus if there exists a deterministic polynomial

time algorithm for solving a Boolean satisfiability, then there

exists a deterministic polynomial time algorithm for solving

all problems in NP. Thus Cook-Levin theorem provides a

proof that the problem of SAT is NP-complete via reduction

technique. The approach used combines the concepts of NP-

completeness and circuit-SAT. Using this technique, we

showed that Boolean satisfiability problem is NP-complete

x1 x5

x8

x9

x7

x6

x4 x3

x2

x10 = 1

https://dx.doi.org/10.22161/ijaers.73.34
http://www.ijels.com/

International Journal of Advanced Engineering Research and Science (IJAERS) [Vol-7, Issue-3, Mar- 2020]

https://dx.doi.org/10.22161/ijaers.73.34 ISSN: 2349-6495(P) | 2456-1908(O)

www.ijels.com Page | 213

through the reduction of polynomial time algorithms for NP-

completeness and circuit-SAT.

REFERENCES

[1] Mazza, D, (2016). Church Meet Cook and Levin. In

Proceedings of the 31st Annual ACM/IEEE Symposium on

Logic in Computer Science (LICS’16) July 05 – 08, 2016,

New York, NY USA, PP.827 – 836.

[2] Armoni, R., A. Ta – Shona, A. Wigderson and S. Zhou (1997).

SLCL 4/3. In Proceedings of the 29th ACM Symposium on

Theory of Computing, pp. 230 – 239.

[3] Tian, W., W. Cuco and He, M. (2018). On the Classification of

NP. Complete Problems and Their Duality Feature. Int’l

Journal of Computer Science & Technology (IJCSIT), Vol 10

No. 1, pp. 64 – 78.

[4] Ogheneovo, E. E. (2019). Theory of Computation: Formal

Languages, Automata & Computability: Shack Publishers, 1st

Edition, Owerri, Nigeria, pp. 567 – 582.

[5] Immerman, N. (1988). Nondeterministic Space is Closed

Under Complementation. SIAM Journal on Computing, Vol.

17, pp. 935 – 938.

[6] Karp, R. M. (1972). Reducibility Among Combinatorial

Problems. In Raymond E. Miller, James W. Thatcher (eds.).

Complexity of Computer Computations, New York, Planum,

pp. 85-103

[7] Levin, L. A. (1986). Average Complete Problems. SIAM

Journal on Computing, Vol. 15, No. 1, 285 – 286.

[8] Cook, S, A. (1971). The Complexity of Theorem Proving

Procedures. In Proceedings of the 3rd ACM Symposium on

Theory of Computing, pp. 151 – 158.

[9] Ciasarch, W. I. (2002). The P = NP? Poll. SCGACT News,

Vol. 33, No. 2, pp. 34 – 47.

[10] Fortnow, L. (2009). The Status of the P versus NP Problem.

Communications of the ACM, Vol. 52, Issue 1, pp. 78 – 86.

[11] Woeginger, G. J. (2003). Exact Algorithms for NP-hard

Problems: A Survey. Combinatorial Optimization Eureka you

Shrink!, pp 185 – 207. Springer – Verlag, New York, Inc; New

York, NY, USA

[12] Ogheneovo, E. E. (2014). Universal Turing Machine: A Model

for all Computational Problems. Int’l Journal of Innovative

Research in Computer and Communication Engineering, Vol.

2, Issue 5, pp. 4436 – 4446.

[13] Ladner, R. E. (1975). On the Structure of Polynomial-Time

Reducibility. Journal of ACM, Vol. 22, No. 1, pp. 155-171.

[14] Ogheneovo, E. E. (2014). Turing Machine and the Conceptual

Problems of Computational Theory. Research Inventy: Int’l

Journal of Engineering and Science.

[15] Ogheneovo, E. E. (2016). The Limits of Turing Machine as a

Computational Model. Digital Innovations & Contemporary

Research in Science & Engineering, Vol. 4 No. 4, pp. 1 – 12.

[16] Dantsin, D., A. Coverall, E. A. Hirsch, R. Kannan, J.

Kleinberg, C. H. Papadimitriou, P. Raghavan, and U. Schoning

(2002). A Deterministic (2 – 2) (k + 1)^n Algorithm for k –

SATT Based on Local Search Theoretical Computer Science,

Vol. 289, pp. 69 – 83

[17] Cook, S. (1971). The Complexity of Theorem Proving

Procedures. In Proceedings of the 3rd Annual ACM

Symposium on Theory of Computing, pp. 151-158.

[18] Levin, L. (1973). Problems of Information Transmissions, Vol.

9, No. 3, pp. 115-116.

[19] Traversa, F. L; C. Ramella, F. Bonani and M.D. Ventra (2015).

MemComputing NP -complete Problems in Polynomial Time

Using Polynomial Resources and Collective States, Science,

Vol. 1, No. 6, pp.

[20] Williams, R, (2011). A Casual Tour Around a Circuit

Complexity Bound. SIGACT News,

[21] Karp, R. M. (1972). Reducibility Among Combinatorial

Problems. In Miller R. E and J. W. Thatcher, Editors,

Complexity of Computer Computations, pp. 85 – 103.

[22] Calabro, C., R. Impaliazzo, and R. Paturi (2009). The

Complexity of Satisfiability of Small Depth Circuits. Int’l

Workshop on Parameterized and Exact Computation Springer

LNCS 5917: 75 – 85.

[23] Calabro, C., R. Impaliazzo, and R. Paturi (2006). A Duality

between Clause Width and Clause Deasity for SAT. In IEEE

Conference on Computational Complexity, pp. 252 – 260.

https://dx.doi.org/10.22161/ijaers.73.34
http://www.ijels.com/

