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Abstract— Stephen Cook and Leonard Levin independently proved that there are problems called NonPolynomial-

complete (NP-complete) problems. The theorem is today referred to as Cook-Levin theorem. The theorem states that 

Boolean satisfiability problem is NP-complete. That is to say, any problem in NP can be reduced in polynomial time 

by a deterministic Turing machine to the problem of determining whether a Boolean formula is satisfiable. 

Therefore, if there exists a deterministic polynomial time algorithm for solving a Boolean satisfiability, then there 

exists a deterministic polynomial time algorithm for solving all problems in NP. Thus Cook-Levin theorem provides 

a proof that the problem of SAT is NP-complete via reduction technique. In this paper, we revisit Cook-Levin 

Theorem but using a completely different approach to prove the theorem. The approach used combines the concepts 

of NP-completeness and circuit-SAT. Using this technique, we showed that Boolean satisfiability problem is NP-

complete through the reduction of polynomial time algorithms for NP-completeness and circuit-SAT. 
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I. INTRODUCTION 

In the 1970s, Stephen Cook and Leonard Levin 

independently discovered that there are problems in NP 

whose complexities are related to all other problems in NP. 

Those problems are called NP-complete problems [1] [2]. 

Cook-Levin theorem states that Boolean satisfiability 

problem is NP-complete. That is to say, any problem in NP 

can be reduced in polynomial time by a deterministic Turing 

machine to the problem of determining whether a Boolean 

formula is satisfiable [3]. Thus if there exists a deterministic 

polynomial time algorithm for solving a Boolean 

satisfiability, then there exists a deterministic polynomial 

time algorithm for solving all problems in NP. Therefore, the 

question of whether such an algorithm exists is called the P 

versus NP problem. However, it must be noted that the P vs 

NP problem is considered the most important unsolved 

problem in theoretical computer science [4] [5].  

A deterministic computer is a machine that can solve a 

problem and provide correct answer whereas a non-

deterministic computer is the one that can “guess” the right 

answer or solution. If a solution exists, computers will 

always guess it. One way to imagine it is by using a parallel 

computer that can freely spawn an infinite number of 

processes by using one processor on each possible answer or 

by using a machine in which all the processors try to verify 

that their solution works especially if a processor finds out 

that it has a working solution [6] [7] .NP can also be thought 

of as the class of problems 1) whose solutions can be verified 

in polynomial time, or (2) that can be solved in polynomial 

time on a machine that can pursue infinitely many paths of 

the computation in parallel. However, there also exist 

problems which are not NP. If a solution is known to NP-

complete it can be reduced to single polynomial-time 

verification. A problem is NP-complete if it is NP and an 

algorithm for solving it is translated into one for solving any 

other NP-problem. There are many complexity classes that 

are much harder than NP. These include: PSPACE, 

EXPTIME, and undecidable problems [8] [9]. It is widely 

believed that P ≠NP. The question then is this: “Is P = NP? 

However, despite the wide belief, it has not been logically 

proved that P =NP. P implies polynomial time solvable 

while NP can be used to verify the correctness of a solution 

in polynomial time. Mathematically, it has not been 

established anywhere in literature that P = NP, although in 

recent times, modern mathematically equivalent definitions 

via efficient verification of purported solutions have been 

established.  
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Thus Cool-Levin theorem provides a proof that the problem 

of SAT is NP-complete via reduction technique. Using the 

notion of reducibility of one problem to another, we say that 

a problem B can be reduced to A, 𝐵 ≤𝑝 𝐴  if given access to 

a solution A, we can solve B in polynomial time using 

polynomial many calls to this solution for A. The notion of 

reducibility is very important to completeness of a problem 

for a class. If a problem L ∈ NP satisfies that for L1∈ NP 

satisfies that for proving NP-completeness by using Karp 

reduction.  

 

II. THE P VS NP PROBLEM 

A problem is said to be a polynomial problem if the number 

of steps needed to solve it is bounded by some power of the 

problem’s size. Polynomial-time is one of the most 

fundamental complexity classes. It contains all decision 

problems that can be solved by a deterministic Turing 

machine in polynomial-time. That is, it is the class of 

decision problems that can have polynomial-time 

deterministic algorithms. Thus an algorithm exists for its 

solution such that the number of steps in the algorithm is 

bounded by a polynomial function of n, where n represents 

the length of the input for the problem. Hence, polynomial 

problems are said to be easy or tractable (i.e., a class of 

problem that is efficiently solvable) [10].  

 

Definition:A problem ispolynomial-time if the number of 

steps required to complete the algorithm for a given input is 

O(nk) for some non-negative integer k, where n is the 

complexity of the input. 

Therefore, the class of P-problems is a subset of the class of 

NP-problems.An algorithm is said to be solvable in 

polynomial-time if the number of steps required to complete 

the algorithm for a given input is O(nk) for some non-

negative integer k, where n is the complexity of the input. 

Most mathematical operations such as addition, subtraction, 

multiplication, and division, as well as computing square 

roots, power, and logarithms, can be performed in 

polynomial time. It must be noted that computing the digits 

of most interesting mathematical constants, including 𝜋 and 

e, can also be done in polynomial time [11] [12]. On the 

other hand, a problem is said to be NP-problem if it permits a 

nondeterministic solution and the number of steps to verify 

the solution is bounded by some power of the problem’s size. 

They are class of decision problems that is solvable in 

polynomial-time on a nondeterministic machine or with a 

non-deterministic algorithm where non-deterministic simply 

means “guessing” a solution. A problem is in NP if a 

solution exists. Problems in NP are relatively easy if and 

only if we could “guess” the right solution, we could quickly 

test it [13] [14]. 

 

2.1 NP-Completeness 

NP-complete problem is very important in the study of 

algorithms. The important thing about NP complexity class is 

that problems within that class can be verified by a 

polynomial time algorithm. A problem is classified as NP-

complete if it can be shown that it is both NP-Hard and 

verifiable in polynomial time. However, there are some 

problems in which polynomial time solutions do not exist. 

NP-complete problems are a set of problems in which any 

other NP-problem can be reduced in polynomial time, and 

whose solution may still be verified in polynomial time. 

Problems in polynomial-time are said to be tractable these 

problems are because solvable and their solutions can be 

shown. NP-complete problems cannot be solved in 

polynomial time in any known way. They are therefore 

referred to as intractable problems. Examples of NP-

complete are include the Hamilton Cycle and traveling 

salesman problems [15].A problem is said to be NP-complete 

when it is both in NP and NP-hard. An NP-complete problem 

encodes simultaneously all problems for which a solution 

can be efficiently recognized (i.e., a “universal problem”). 

The question is: can such a problem really exist? Cook [16] 

and Levin [17] both independently showed in their works 

that NP-complete problems exist. Also, Therefore, it is 

difficult to determine whether or not it is possible to solve a 

problem quickly in polynomial time. The NP-completeness 

can be thought of as a way of making the big P = NP 

question equivalent to smaller questions about the hardness 

of individual problems. Therefore, if we believe that P ≠NP, 

and we are able to prove some problem is NP-complete, then 

such a problem does not have a fast algorithm.  

Definition: A problem X is NP-complete if 1) X is in NP, and 

2) every problem in NP is reducible to X in polynomial time. 

X can be shown to be NP by demonstrating that a candidate 

solution to C can be verified in polynomial time.That is, a 

problem is NP-complete if it is NP and an algorithm for 

solving it is translated into one for solving any other NP-

problem 

NP-complete problems are defined in a precise sense as the 

hardest problems in polynomial time. Although, as stated 
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earlier, it has not been proved that there is any problem in NP 

that is not in P. However, we can point to an NP-complete 

problem and say that if there is any hard problem in NP, that 

problem is one of the hard ones. Conversely, if everything in 

NP is easy, those problems are easy. NP-complete problems 

are in NP. That is, the set of all decision problems whose 

solutions can be verified in polynomial time. NP problems 

can be defined as the set of decision problems that can be 

solved in polynomial time using a non-deterministic Turing 

machine. A problem p in NP is NP-complete if every other 

problem in NP can be transformed (or reduced) into p in 

polynomial time. 

 

III. THE CIRCUIT-SAT 

[The circuit-SAT (CSAT) [21]is a decision problem of 

determining if a given Boolean circuit has an assignment of 

its inputs that makes the output true. That is, it asks whether 

the inputs to a given Boolean circuit can be consistently set 

to 1 or 0 such that the circuit outputs 1. If this is the case, the 

circuit is said to be satisfiable. Otherwise, the circuit is 

unsatisfiable. Thus the circuit-SAT asks that given a Boolean 

circuit C, is there is an assignment to the variables that 

causes the circuit to output 1? 

3.1 Satisfiability Problem 

The SATISFIABLE (SAT) problem is the problem of 

determining if there exists an interpretation that satisfies a 

given Boolean formula. SAT is the problem of deciding if 

there is an assignment to the variables of a Boolean formula 

such that the formula is satisfied [18]. That is, SAT try to 

find out if the variables of a given Boolean formula can be 

consistently replaced by the values TRUE or FALSE such 

that the formula evaluates to TRUE. If this can be 

established, then the formula is said to be satisfiable 

otherwise it is unsatisifiable. For example, a SAT problem 

can look as follows: 

  (a ∨ b ∨ c) (a ∨ 𝒃) (b ∨c) (c ∨a) (a∨b v c) 

The above is a Boolean formula in conjunctive normal form 

(CNF). The formula contains a collection of clauses (in 

brackets), with each clause consisting of the disjunction 

(logical or (denoted V)) of several Boolean variables such as 

(a) or negations of one such as (b). A SAT assignment must 

evaluate to true or false. The SAT problem is: Given a 

Boolean formula in conjunctive normal form, either find a 

satisfying truth assignment or else report that none exists. 

Thus the main idea about SAT is that an expression exists in 

conjunctive normal form, which is a way of saying that there 

are a series of expressions joined by ORs that must be 

TRUE. For example: 

  

(a ∨b) AND (b ∨c) AND (d ∨e∨ f) 

Definition:A Boolean 𝜑formula is defined over a set 

ofproposition variablesx1, …, xn, using the standard 

propositional connectives ∼, ∨, ∧, →, ↔ and parenthesis. The 

domain of propositional variables is {0, 1}. 

Definition: A formula 𝜑 in conjunctive normal form (CNF) 

is a conjunction of disjunctions (clauses) of literals, where a 

literal is a variable or its complement. A formula is satisfied 

if all its clauses are satisfied. A formula is unsatisfied if at 

least one of its clauses is unsatisfied.  

3.2 The 2-Satisfiability (2-SAT) Problem 

The 2-satisfiability (2-SAT) problem can be described as the 

problem of determining whether a collection of Boolean 

variables with constraints on pairs of variables can be 

assigned values satisfying all the constraints. The “2” in this 

name stands for the number of literals per clause, and “SAT” 

stand for satisfiable, a type of Boolean expression. 2-SAT is 

a special case of the general SAT problem and can be solved 

in polynomial time (i.e., tractable problems) in which the 

running time is upper bounded by a polynomial expression in 

the size of the input for the algorithm in which T(n) = O(nk) 

for some constant k. Generalized SAT problems involve 

constraints on more than two variables, and of constraint 

satisfaction problems, which can allow more than two 

choices for the values of each variable[19] [20] . 

2-SAT problems are examples of NL-complete problems, 

i.e., problems that can be solved non-deterministically using 

a logarithmic amount of storage.NL-complete problems are 

among the hardest and the most difficult solvable problem in 

computer resource bound. A 2-SAT problem can be 

described using a Boolean expression with a special 

restricted form: a conjunction or disjunctions, where each 

operation has two arguments that may either be variables or 

the negations of variables. These variables or their negations 

appearing in this formula are referred to as literals and the 

disjunctions of pairs of literals are referred to as clauses. As 

an example, consider the following conjunctive normal form 

(CNF), having seven variables (i.e., x0, x1, …, x6) and eleven 

clauses. 

(x0∨x2) ∧(x0∨ ~x3) ∧(x1∨ ~x3) ∧(x1∨ ~x4) ∧(x2∨ ~x4) 

∧(x0∨ ~x5) ∧ 

(~x1∨ ~x5) ∧(x2∨ ~x5) ∧(x3∨x6) ∧(x4∨x6) ∧(x5∨x6) 
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Figure 1 shows an example of the use of literals and clauses 

in determining the truth or falsity of an assignment 

statement. Thus the SAT problem is a problem for 

determining a truth assignment to these variables that makes 

a formula of this type true: we must choose whether to make 

each of the variables true or false, so that the assignment sets 

at least one literal to true in every clause.  

 

Fig. 1: An example of the use of literals and clauses. 

One possible satisfying assignment for the expression above 

is the one that set all seven of the variables to true. Thus the 

2-SAT instance represented by the expression is satisfiable. 

Formulas of the form described above are called 2-CNF 

formulas: the “2” in this name stands for the number of 

literals per clause, and “CNF” stand for Conjunctive Normal 

Form, a type of Boolean expression in the form conjunction 

of disjunctions. Each clause in a 2-CFN formula is logically 

equivalent to an implication from one variable or negated 

variable to the other. For example,  

(x0∨ ~x3) ≡ (~x0⟹  ~x3) ≡(x3 ⟹ x0) 

However, it must be noted that a 2-SAT instance may be 

written in implicative normal form because of the 

equivalence between these different types of operations. In 

this case, each operation is replaced in the CNF by both of 

the two implications to which it is equivalent. The 2-SAT 

can also be explained using graphical illustration by using 

implication graph. An implication graph is a directed graph 

in which there is one vertex per variable or negated variable, 

and an edge connecting one vertex to another whenever the 

corresponding variables are related by an implication in the 

implicative normal form of the instance. The implication 

graph is skew-symmetric directed graph G(V, E) having 

vertex set V and directed edge E. In this graph, each vertex 

in V represents the truth status of a Boolean literal, and each 

directed edge from vertex u up vertex v represents the 

material implication. An instance is satisfiable if and only if 

no literal and its negation belong to the same strongly 

connected component of its implication graph, which can be 

used to solve 2-SAT instances in linear time [21]. 

3.3 3-SAT 

The 3-SAT is a special case of SAT that is very useful in 

proving NP-hardness results. It is so called because it has 3 

literals in each of its clauses [22]. The 3-SAT problem is 

used to find a solution that will satisfy the expression where 

each of the OR-expressions has exactly 3 Booleans. 

  (x1∨  𝒃 ∨c) and (a ∨ 𝒃 ∨ 𝒅) and (b ∨c v d) 

A solution to this logical statement might be (a = T, b = T, c 

= F, d = F). Thus the best way to solve this problem is to use 

a guess and check method by trying different combinations 

until match that work is formed. Recall that a Boolean 

formula is in conjunction normal form (CNF) if it is a 

conjunction (AND) of several clauses, each of which is the 

disjunction (OR) of several literals, each of which is either a 

variable or its negation. For example,  

(x1∨x2∨x3∨x4) ∧ (x2∨∼x3∨∼x4) ∧ 

(∼x1∨x3∨x4) ∧ (x1∨ ∼ x2). 

Theorem (Cook-Levin): SAT is NP-complete 

Proof 

Cook-Levin theorem states that any problem in NP can be 

solved in polynomial-time by a non-deterministic Turing 

machine. Therefore, by definition of NP-complete, it will be 
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necessary to first show that SAT is in NP and also show that 

SAT is in NP-Hard. Consider Turing machine RAM t = 0, 1, 

2, …, O(n2) having a read-only memory, program, and 

read/write memory respectively as shown in figure 1.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2: A Turing machine having read-only memory, program, and read/write memory respectively 

 

[Now consider the Boolean Formula: 
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Fig. 3: A Turing machine with read/write memory 
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Fig. 4: A RAM machine for solving SAT problem 

It must be noted that no restrictions are placed on the number of literals in each of a CNF formula. Also, a formula is said to be a 

CNF formula if it is the case that is a CNF formula with exactly three literals in each clause. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5: A snapshot of the Boolean formula 

 

Charge every gate clause into a CNF formula. There are only 

three types of clauses, one for each type of gate:  

 x1 = x2 ∧x3 → (x1∨∼x2∨∼x3) ∧ (∼x1∨x2) ∧  (∼x1∨x3) 

 x1 = x2 ∨ x3 → (∼x1∨x2∨x3) ∧ (x1∨∼x2) ∧  (x1∨∼x3) 

 x1 = x2 → (x1∨x2) → (∼x1∨∼x2) 

iv). Ensure that every clause has exactly three literals. 

Introduce new variables into each one- and two-literals 

clause, and expand it into two clauses as follows: 

 (⋯ ) ∧ (⋯ ) ∧ (⋯ ) ∧ (⋯ ) ← 

 

 

t = 0 

t = 1 

t = 0(nc) 

(⋯ ) ∧ (⋯ ) ∧ (⋯ ) ∧ (⋯ ) 

(⋯ ) ∧ (⋯ ) ∧ (⋯ ) ∧ (⋯ ) 

Solve SAT for this for to learn 

what the RAM does here. 

Time RAM “Snapshot” Boolean  Formula 
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         x1 → (x1∨x∨ y) ∧ (x1∨∼x ∨ y) ∧  (x1∨x∨∼y) ∧  

(x1∨∼x∨∼y) 

  x1∨x2 → (x1∨x2∨x) ∧ (x1∨x2∨∼x). 

 

For example, the formula is not a 3CNF formula, but the 

following, but the following formula is: 

 = (x2x3𝑥̅4)  (x1𝑥̅2𝑥̅3)  (x1x3x4)  

(𝑥̅1x2 x3)   

Therefore, a Boolean formula  in the variables x1, . . . , xn 

satisfiable if there exists a Boolean assignment for the 

variables that cause the formula to evaluate to 1. For 

example, both formulas  and C are satisfied: the 

assignment x1 = 1, x2 = 2, x3 = 3, x4 = 0 works for both of 

them.  

Figure 6 shows a diagram for reducing circuit satisfiability to 

formula satisfiability. The formula produced by the reduction 

has a variable for each wire in the circuit  

∅ = 𝑋10
1 ∧ (x10 ↔ (x7∧ x8∧ x9)) 

∧ (x9 ↔ (x6∨ x7)) 

∧ (x8 ↔ (x5∨ x6)) 

∧ (x7 ↔ (x1∧ x2∧ x4)) 

∧ (x6 ↔ (∼ x4)) 

∧ (x5 ↔ (x1∨ x2)) 

∧ (x4 ↔  x6) 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6: A typical Circuit-SAT 

 

This shows that it is satisfied and it is an NP-complete 

problem 

x10 = (x7x8x9) = (x1x2x4)  (x5x6)  (x6x7) 

= (x1x2𝑥̅3)  (𝑥̅4 (x1x2)) 𝑥̅4 (x1x2))  (x4 (x4x1x2)  

Using inductive method, we have 

x y x  y 

1 1 1 

1 0 0 

0 1 0 

0 0 1 

Therefore, x10 (x8x9x7) 

X10 is true if and only if (x8x9x7) 

IV. CONCLUSION 

In this paper, we revisit Cook-Levin Theorem but using a 

completely differ approach to prove the theorem. The 

theorem states that Boolean satisfiability problem is NP-

complete. That is to say, any problem in NP can be reduced 

in polynomial time by a deterministic Turing machine to the 

problem of determining whether a Boolean formula is 

satisfiable. Thus if there exists a deterministic polynomial 

time algorithm for solving a Boolean satisfiability, then there 

exists a deterministic polynomial time algorithm for solving 

all problems in NP. Thus Cook-Levin theorem provides a 

proof that the problem of SAT is NP-complete via reduction 

technique. The approach used combines the concepts of NP-

completeness and circuit-SAT. Using this technique, we 

showed that Boolean satisfiability problem is NP-complete 

x1 x5 

x8 

x9 

x7 

x6 

x4 x3 

x2 

x10 = 1 
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through the reduction of polynomial time algorithms for NP-

completeness and circuit-SAT. 
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