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Abstract— The present work investigates the efficiency of the Multigrid method when applied to solve two-

dimensional laminar steady free convection flow in a square enclosure partially heated from below. The numerical 

method includes finite volume discretization with upwind scheme on structure orthogonal regular meshes. The 

performance of the correction storage (CS) Multigrid algorithm is compared for different numbers of sweeps in each 

grid level. Up to two grids, for both Multigrid V- and W- cycles, are presented. The results are mainly analyzed in 

terms of the average heat transfer at the walls of the enclosure and Multigrid performance on the rate of 

convergence. It is also shown that convective heat transfer has a characteristic behavior for each boundary 

conditions adopted in given ranges of the governing parameters. 
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Abbreviated title: Numerical Analysis of Free Convection Using the Multigrid Method 

Nomenclature 

pC  Specific heat at constant pressure 

CPU  CPU Time (s) 

g  Gravitational acceleration 

Gr  Grashof number 

h  Average convective heat transfer coefficient 

H  Height of the enclosure 

L  Domain length / height 

k  Thermal conductivity of the fluid 

M  Maximum grid number  

Nu  Average Nusselt number,  

p  Thermodynamic pressure 

Pe  Peclet number 

Pr  Prandtl number 

ijR  Residue 

T  Temperature 

wt  Temperature of the isothermal vertical wall 
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S  Source term for , tpVU ,,,  

U  Component of velocity along x  axis 

V  Component of velocity along y axis 

w  Width of the inlet, and the vent  

yx,  Cartesian coordinates 

Subscrit 

ji,  Nodal index 

in  Input values 

k  Grid level 

nb  Neighboring 

Greeks Characters 

  Thermal diffusivity, kC p /  

  Coefficient of thermal expansion, 

pt
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  Dimensionless length of the heat source, 
L

l  

  Kinetic viscosity of the fluid 

  Dynamic viscosity 

  Density of fluid 

  General variable 

  Diffusion coefficient for , tpVU ,,,  

cg  Number of Coarsest-grid iterations 

pre  Number of pre–smoothing iterations 

post  Number of post–smoothing iteration 

 

I. INTRODUCTION 

 This study promotes a discussion surrounding the 

efficiency of the Multigrid method applied in a specific 

configuration. Multigrid methods have been used in many 

different calculations as a result of its facilitated converge 

capability.In single-grids, convergence rates solutions are 

greater in the beginning of calculations, reducing this 

sensibility while the iterative processes goes on. This hard-

to-converge behavioris due to the iterative methods which 

smooth out only those Fourier error components of 

wavelengths smaller than or equal to the grid size. Naturally, 

this effect becomes more significant as the mesh becomes 

refined. At another level, Multigrid methods cover a broader 

range of wavelengths trough relaxation on more than one 

grid, making it easier to converge.  

A Multigrid cycle is a repetitive procedure practiced at 

each grid level according to the grid hierarchy. The V- and 

W- cycles are types of Multigrid that determines the 

convergence criterion and the number of iterations in each 

step along consecutive grid levels visited by the algorithm. 

Within each cycle, the intermediate solution is relaxed before 

(pre-) and after (post-smoothing) the transportation of values 

to coarser (restriction) or to finer (prolongation) grids [[1]-

[3]]. 

The Multigrid method can be roughly classified into 

two major categories. The CS formulation, where algebraic 

equations are solver for the corrections of the variables and 

the Full Approximation Storage (FAS) scheme, where 

variables themselves are handled in all grid levels. Since 

much work has been done on both major classifications, 

specific recommendations are admitted. The application of 
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the CS formulation is recommended for the solution of linear 

problems being the FAS formulation more suitable to non-

linear cases [[1]-[3]].Therefore, an exception has been 

disclosed in the work of [[4]], who reported predictions for 

the Navier-Stokes equations successfully applying the 

Multigrid CS formulation. In the literature, however, not too 

many attempts in solving non-linear problems with Multigrid 

linear operators are found. 

Acknowledging the advantages of using multiple grids, 

[[5]] presented numerical computations applying this 

technique to recirculating flows in several geometries of 

engineering interest. There, the correction storage (CS) 

formulation was applied to non-linear problems. Later [[6]], 

analyzed the effect of Peclet number and the use of different 

solution cycles when solving the temperature field within 

flows with a given velocity distribution. In all those cases, 

the advantages in using more than one grid in iterative 

solution was confirmed, furthermore, [[7]], introduced the 

solution of the energy equation in their Multigrid algorithm. 

Temperature distribution was calculated solving the whole 

equation set together with the flow field as well as 

uncoupling the momentum and energy equations. A study on 

optimal relaxation parameters was there reported. More 

recently, [[8]] analyzed the influence of the increase of 

points of the mesh and optimal values of the parameters of 

the Multigrid cycle for different geometries. Also, [[8]-[11]], 

presented a study on optimal convergence characteristics in 

solution of conductive-convective problems. 

Much work has been done with enclosure geometries, 

studying heat and mass transfer, (simultaneously or not) 

because of its engineering response value. The reason for the 

attention behind the physical nature of buoyance-induced 

flows is well represented in [[12]].  Cooling of electronic 

devices before its excessive heating, recovery of remnant oil 

in petroleum reservoirs, dispersion of atmospheric pollution 

and its implications in adjacent cities,spreading chemical and 

nuclear waste in soil, are just some examples of its 

importance.  

The current work considers that free convection 

conditions can be imposed inside a square cavity and aims to 

study the interactions between buoyancy forces and heat 

elements inside. This application involves the work showed 

in the literature that has been discussed by many authors. The 

interaction between buoyancy forces and the heated elements 

and the numerical analysis of Multigrid solution applied into 

momentum and heat transfer forms the main objective of 

current work. 

II. GOVERNING EQUATIONS 

 The following equations emerge from the mathematical 

descriptions of fluid flow and convective heat transfer in the 

enclosure. These governing equations are based on two-

dimensional, incompressible, laminar flow in Cartesian 

coordinate system. 
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Where U  and V are the velocity components in x  and 

y  directions respectively,  is the density of the fluid, p  

is the total pressure and  is the kinematic viscosity of the 

fluid. The gravity acceleration is defined by g  and 
T is the 

thermal expansion coefficient. T and refT  are the 

temperature and the reference temperature, respectively, and 

  is the thermal diffusivity.  

The transport dimensionless parameters, Grashoff ( Gr
), which provides the relationship between fluid buoyancy 

and viscosity, Prandtl ( Pr ), that provides the relationship of 

momentum diffusivity and thermal diffusivity and the 

Rayleigh number ( Ra ), which is an associated number of 

buoyancy-driven flow (natural convection) are given by: 
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                        (5) 

 

 PrGrRa                                                 (6) 

 

III. NUMERICAL MODEL 

The solution domain consist on a number of rectangular 

control volumes (CV), resulting in a structure orthogonal 

non-uniform mesh. Grid points are located according to a 

https://dx.doi.org/10.22161/ijaers.73.50
http://www.ijaers.com/


International Journal of Advanced Engineering Research and Science (IJAERS)                                        [Vol-7, Issue-3, Mar- 2020] 

https://dx.doi.org/10.22161/ijaers.73.50                                                                                          ISSN: 2349-6495(P) | 2456-1908(O) 

www.ijaers.com                                                                                                                                                                                    Page | 355  

cell-centered scheme and velocities are store in a collocated 

arrangement[[13]]. A typical CV with its main dimensions 

and internodal distances is sketched in Fig. Error! 

Reference source not found.. 

 

Fig. 1– Control Volume for discretization. 

 Writing equations (1), (2), (3) and (4) in terms of a 

general variable  TVU ,,,1  with 
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After integrating it over the CV of Fig.Error! 

Reference source not found., 
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A set of algebraic equations are resulted from the 

integration of terms in (8), as one can name it, convection, 

diffusion, and source. Since these procedures are described 

somewhere else (e.g. Error! Reference source not found.) 

they are not repeated in this paper. To summarize, convective 

terms are discretized using the upwind differencing scheme 

(UDS) and diffusive fluxes make use of the central 

differencing scheme (CDS). 

 The final discretization for grid node P is done by using 

the integrated transport equation (8) with the substitution of 

all approximate expressions for interface values and 

gradients. 

baaaaa SSNNWWEEPP       (9) 

With the east face coefficient, for example, being 

defined as: 

   eeE DCa  0,max                                    (10) 

 

In (10), eyee xD    and   yee UC   are 

the diffusive and convective fluxes at the CV east face, 

respectively, and, as usual, the operator  ba,max  returns 

the greater between a  and b . 

 

IV. MULTIGRID TECHNIQUE 

The wanted effect of the Multigrid approach in this 

work is for the convergence rate to become independent on 
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the grid spacing and the numerical solution faster. The task 

behind the Multigrid method is to involve a hierarchy of 

successively coarsened grids into the iterative solution 

process. When done, an adequate strategy for the movement 

through the different grid levels should follow, along with 

consistently transferring data with the discretization scheme 

between the grids. This process allows an efficient error 

reduction over a wide spectrum of frequencies. 

If an iterative scheme as the one described below is 

applied to the system of equations on a given grid, it turns 

out only those frequencies of the solution error can be 

reduced efficiently, which corresponds to the grid spacing. 

The high frequencies of the error are reduced a few 

iterations, while the low frequencies nearly remain 

unchanged. At another level, the steps usually taken in 

Multigrid algorithm are the reduction of high frequency 

errors(smoothing), computation of residual error(residual 

computation), decimation of the residual error to a coarser 

grid(restriction), and the interpolation into a finer grid.  The 

present development about the Multigrid technique is also 

presented in [[5],[6],[10],[11]] and for this reason the 

development is not repeated here.   

 

V. RESULTS AND DISCUSSION 

 The computer code was run on an IBM PC machine 

with an INTEL CORE 2 DUO 2.0 GHz processor. Grid 

independence studies were conducted such that the solutions 

presented herein are essentially grid independent. For both 

cycles, pre- and post-smoothing iterations were 

accomplished via the Gauss-Seidel algorithm while, at the 

coarsest-grid, the TDMA method has been applied [[13]]. 

The Fig. 2 a) represent general geometries that were run 

with the finest grid having 6666x  grid points highlighted in 

Fig. 2 b). 

 

Fig. 2 - a) Geometries and boundary conditions and b) computational grid. 

  

The main difference between the present work and the 

work from [[14]] is that here it is used the prescribed values 

(temperature - 
HT ) while in the reference work is used heat 

fluxes. This particularity reinforces a permanent regime with 

constant physical properties of the flux.  

In order to understand better the implications of this 

new configuration and construct a simpler idea of the square 

cavity, for comparison meaning,Fig. 3 shows the streamlines 

and isotherms, respectively, of a clear square cavity heated 

on the left and cooled from the opposing side for Rayleigh 

numbers ranging from 
3101 to

6101 . 
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Steam Functions Temperature 

𝑅𝑎 = 1 ∗ 103 

 

a) 

 

b) 

𝑅𝑎 = 1 ∗ 104 

 

c) 

 

d) 

𝑅𝑎 = 1 ∗ 105 

 

e) 

 

f) 

1 ∗ 106 𝑅𝑎 =

g) 

  

 

h) 

Fig. 3 - Natural Convection in Square Cavity from left to bottom 𝑅𝑎 = 1 ∗ 103  ,  𝑅𝑎 = 1 ∗ 104,  

 𝑅𝑎 = 1 ∗ 105and 𝑅𝑎 = 1 ∗ 106, respectively. 

In Fig. (3a), 
3101Ra , the streamlines indicates an 

existence ofone centered vortex while corresponding 

isotherms, Fig. (3b), indicates a conductive heat transfer, 

expressed by the almost parallel pattern with the heated wall. 

The vortex is generated by the horizontal temperature 

gradient across the section. This gradient,
y

T




is negative 

everywhere, inducing a clockwise oriented vorticity. 

When the Rayleigh number is increased to 

4101Ra , Fig. (3c), the vortex in the middle of the 
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cavity starts to shape differently, slightly into a more elliptic 

configuration. The isotherms, Fig (3d), therefore, have a 

considerable convection advance, and the parallel 

configuration is undone, especially in the middle of the 

cavity.Temperature gradients are stronger near the vertical 

walls, but decrease in the center region.  
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d) 

 

Fig. 4 – Temperatures residues history for different values of the Rayleigh number: a)𝑅𝑎 = 1 ∗ 103, 

 b) 𝑅𝑎 = 1 ∗ 104, c)𝑅𝑎 = 1 ∗ 105and d)𝑅𝑎 = 1 ∗ 105 
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For 
5101Ra , Fig. (3e), the elliptical behavior 

continuous and the centered vortex is stretched so that two 

secondary vortices can be shown inside of it. Heat transfer by 

convection in the viscous boundary layer alters the 

temperature distribution to such an extent that temperature 

gradients in the center of the domain are close to zero. Fig. 

(3e) shows that, with this change in the sign of the source 

term negative, vorticity is induced within the domain. This 

also causes the development of secondary vortices in the 

core. Fig. (3f) continuous its convection advance in the 

square cavity indicating a faster movement of the flux closer 

to the walls.  

Finally, in Fig. (3g), 
6101Ra , one can see an 

initiative attempt for a three vortices configuration inside the 

main vortex. Corresponding Fig. (3h) shows that heat 

transfer is mostly convective, again due to the faster 

movement on boarders.    

Fig.4 above, shows the residue history for temperature 

with different values of 
3101Ra  to 

5105 , up to 3 

grids, for the V- and W-cycles. For a three grids, with 

3101Ra one can notice a slight advantage in using the 

W-cycle, while in 
4101Ra that advantage is almost 

unnoticeable. Now, looking at higher Rayleigh numbers, 

5101Ra  to 
5105Ra , the V-cycle can be better 

stipulated. This change of cycle due to the increase in the 

Rayleigh number happens because of the changing flux 

attempt to turn turbulent. An explanation for this matter are 

on many references of Multigrid approximation on turbulent 

flow, which in most of the cases use the FAS formulation.  

Another configuration, shows the results of 

isotherms and streamlines of a clear square cavity heated on 

the bottom and cooled from the top for a Rayleigh number of 

4104Ra . The work of [[12]] is used for comparison.  

Reference [[12]] 

  

Present Results 

 
 

Fig. 5 – Isotherms and Streamlines for a clear square cavity heated from bottom and from the ceiling for  

𝑅𝑎 = 1 ∗ 104, comparison between [[12]] and present research. 

 

In Fig. 5, it is easy to see the similarities in the results of 

bothworks. Studying these results, one can note the plume 

shaped structure starting at the bottom of the cavity moving 

towards the top. Circulatory motion brings the bottom hot 
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temperature stream up to the top wall, substantially 

penetrating into the flow core. 

 From these results, is expected a better understanding 

and a certain familiarization with the final configuration, Fig. 

2a, due to the heated bottom in the square cavity. 

Additionally,Fig. 5 representsthe only possible solutions for 

that Ra  number, reinforcing the final results and the 

geometry qualitatively. 

 Final configuration, square cavity partially heated from 

above, is separated into two different forms, denoted as 
1C  

and 
2C . The 

1C  structure hasboth lateral walls cooled at 

temperature cT  and top wall adiabatic, while 
2C  hasleft 

lateral wall and top wall cooled at temperature cT  and right 

lateral wall adiabatic. Fig. 6 is a representative scheme of  

1C  and 
2C . Notice that for allconfigurations the total 

surfaces of the cooled walls are identical. 

 

Fig. 6 - Thermal configurations of the cavity. 
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4104Ra  

  
 

6101Ra  

   

Fig. 7 – Isotherms, vectors and isotherms in the cavity for 03.0 . 

 

Final results can be seen in Fig. 7, 8 and 9 for 
1C  

and 
2C conditions, side by side, as Rayleigh number 

increases top to bottom. As   was incremented, the 

streamlines and isotherms related are plotted. 

First observation lies on the boundary thermal 

conditions. When these conditions are symmetrical, about the 

vertical mid plane, i.e., case
1C , the fluid motion is also 

symmetrical and two counter-rotating cells are formed in the 

cavity. The isotherms are also symmetrical about the vertical 

mid plane and it is noticed that the temperature gradient 

becomes steeper and bigger at the hot surface where a 

thermal plume may be located.In case 
2C , fluid flow takes a 

direction towards the adiabatic wall on the side of the cavity, 

making the flow asymmetric and characterized with a single-

cell of anticlockwise circulation. 

In each case the stagnation point is observed at the 

middle of the bottom wall. It is easy to see the similarity 

between case 
1C  and the bottom-heated arrangement in Fig. 

5, making a plume shaped pattern. Similar behaviors of the 

flow and thermal fields are observed at other Rayleigh 

numbers as an increment for the following Figures. Finally, 

Fig. 10 presents temperatures residues history for different 

values of the Rayleigh number, 
4104Ra and 

6101Ra  for the case it was presented in Fig. 7. Once 

more again the Multigrid solution has the best results at least 

in the computational effort reduction. 
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Boundary Condition - 1C  Boundary Condition - 2C  

4101Ra  

    

5101Ra  

    

6101Ra  

    

Fig. 8 - Streamlines and isotherms in the cavity for 2.0 . 
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Boundary Condition - 
1C  Boundary Condition - 

2C  

4101Ra  

    

5101Ra  

    

6101Ra  

    

Fig. 9- Streamlines and isotherms in the cavity for 5.0 . 
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b) 

Fig. 10 – Temperatures residues history for different values of the Rayleigh number: a)  

𝑅𝑎 = 1 ∗ 104 and b) 𝑅𝑎 = 1 ∗ 106 
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