
International Journal of Advanced Engineering Research and Science (IJAERS) [Vol-7, Issue-8, Aug- 2020]

https://dx.doi.org/10.22161/ijaers.78.39 ISSN: 2349-6495(P) | 2456-1908(O)

www.ijaers.com Page | 358

Learning Word and Sub-word Vectors for

Amharic (Less Resourced Language)

Abebawu Eshetu1, Getenesh Teshome2, Tewodros Abebe3

1,2Department of Information Technology, Haramaya University, Ethiopia
3Department of Computer Science, Wolaita Sodo University, Ethiopia

Abstract— The availability of pre-trained word embedding models (also known as word vectors)

empowered many tasks in natural language processing, leading to state-of-the-art performance. A key

ingredient to the successful application of these distributed word representations is the existence of large

curated corpora to train them and use the pre-trained models in downstream tasks. In this paper, we

describe how we trained such quality word representations for one of less-resourced Ethiopian languages,

Amharic. We used several offline and online data sources and created 100, 200, and 300-dimension

word2vec and FastText word vectors. We also introduced new word analogy dataset to evaluate word

vectors for Amharic language. In addition, we created Amharic sentence piece model, which can be used to

decode and encode words for subsequent NLP tasks. Using this SentencePiece model, we created Amharic

sub-word word2vec embedding with 25, 50, 100, 200, and 300 dimensions trained over our large curated

dataset. Finally, we evaluate our pre-trained word vectors on both intrinsic word analogy and extrinsic

downstream natural language processing task. The result shows promising performance for both intrinsic

and extrinsic evaluations as compared to previously released model.

Keywords— Amharic, word vectors, fasttext, word2vec.

I. INTRODUCTION

The introduction of the paper should explain the nature

of the problem, previous work, purpose, and the

contribution of the paper. The contents of each section may

be provided to understand easily about the paper.

Learning distributed word representations using neural

models such as word2vec (Mikolov et al., 2013b) and

FastText (Bojanowski et al., 2017) have been widely used

in natural language processing and shown promising

progress over conventional approaches. The existence of

freely available Wikipedia data for most languages

supported the ability of learning from large amounts of

texts. Publicly available models for resourced languages,

which are pre-trained on large amounts of data through

unsupervised learning, have become a key component of

many neural language understanding models. However,

Amharic is not benefited from such an advancement due to

lack of large curated data collection over web. While most

interesting neural architectures are massively introduced

for English, but lack of data and pure word vector barely

represented Amharic language for this domain.

The large text collection from Wikipedia and common

crawl are commonly used data source to train and learn

word vectors (Al-Rfou et al., 2013; Bojanowski et al.,

2017) for many languages. Unfortunately, the size of

Wikipedia is relatively small and often not enough to learn

high quality word vectors with wide coverage for many

less-resourced languages including Amharic. While

common crawl can be used as an alternative solution to get

large text with a broader coverage, its data content is

noisier than Wikipedia articles (Bojanowski et al., 2017).

As part of building 157 language word vectors project,

Facebook released a pre-trained embedding for Amharic

language. The Polyglot project (Al-Rfou et al., 2013) also

provides pre-trained embedding trained on Wikipedia.

While word vectors with about 3K vocabularies of

Amharic language is included with Al-Rfou et al. (2013)

and Grave et al. (2018) work, most of the words in the

vocabulary are non-Amharic words. This is happened

because of the dataset is not well prepared. Moreover, as

mentioned above, Wikipedia is not rich to train word

vectors for most less-resourced countries. In addition, none

of the above authors evaluated Amharic word vectors.

Thus, preparation of large and curated text collection from

different available online and offline data sources and

learning quality word vectors is required for empowering

semantic word understanding of Amharic NLP tasks.

https://dx.doi.org/10.22161/ijaers.78.39
http://www.ijaers.com/

International Journal of Advanced Engineering Research and Science (IJAERS) [Vol-7, Issue-8, Aug- 2020]

https://dx.doi.org/10.22161/ijaers.78.39 ISSN: 2349-6495(P) | 2456-1908(O)

www.ijaers.com Page | 359

We contributed a high-quality word vectors for

Amharic language using different word embedding models

trained over varieties of online and offline data sources.

We used Wikipedia, government websites, news articles,

Facebook page posts, blogs, explicitly published Amharic

text corpora for different NLP tasks, legal documents,

fictions, academic books, and spiritual offline documents

as data source to train and learn word vectors of both

FastText and word2vec models in 100, 200 and 300

dimensions. We evaluated our word vectors with intrinsic

word analogy task and extrinsic neural part of speech

tagger task. We have also introduced new word analogy

dataset that contain both semantic and syntactic word

formations for Amharic language.

While pre-trained word embeddings are publicly

available, vectors for sub-word are commonly trained on a

per-task basis or used with dummy vector values using

one-hot-vectors. Heinzerling B. and Strube M. (2018),

released pre-trained sub-word embeddings in 275

languages which is trained by Wikipedia dumps using BPE

tokenizer and GloVe (Pennington J. et al., 2014) model.

Amharic sub-word GloVe vector is also released as part of

their work. However, less quality of Wikipedia dataset and

standard evaluation made it difficult to use. We trained

sub-word tokenizer over our raw dataset for using open

source SentencePiece library (Kudo T. and Richardson J.,

2018) that can be also used as sub-word segmenting model

for other Amharic NLP downstream tasks. Using our

SentencePiece model, we have also released Amharic sub-

word word2vec embedding with 25, 50, 100, 200, and 300

dimension trained in our curated quality and large coverage

dataset and evaluated in neural Amharic-English

downstream task. All Amharic learned word vectors we

trained can be accessed from

https://github.com/Abe2G/AM-Vectors and the code used

to normalize Amharic text, train and evaluate word vector

embedding is publicly available at https://abe2g.github.io/.

II. RELATED WORK

Several monolingual pre-trained word vectors have

been released for different languages together with open

source implementation of word embedding models.

English word vectors trained on a part of the Google News

dataset (100B tokens) were published with word2vec

(Mikolov et al., 2013b). Pennington et al. (2014) released

GloVe models trained on Wikipedia, Gigaword and

Common Crawl (840B tokens). Al-Rfou et al. (2013), in

which word vectors have been trained for 100 languages

using Wikipedia data. Grave et al. (2018) released FastText

word vectors for 157 languages trained over Wikipedia and

Common Crawl.

III. AMERHARIC LANGUAGE

Amharic (አማርኛ,ʾämarəña) is an official working

language of Ethiopian government spoken by over 100M

people all over the country. The Amharic script is known

as Ge’ez or Ethiopic. The writing system is called Fidäl

(ፊደል) in Ethiopian Semitic languages. Fidäl means

"script", "alphabet", "letter", or "character" or abugida

(አቡጊዳ), from the first four symbols. Fidäl is a syllabary

writing system where the consonants and vowels co-exist

within each graphic symbol (Hudson, G., 2009). Unlike

majority of its Semitic scripts, such as Arabic and Hebrew,

fidäl is written from left to right. The writing system

consists of 33 consonants, each having seven “orders” or

shapes depending on the vowel with which a given

consonant is combined. These are arranged into seven

houses (orders) according to the kind of each vowel that

the consonants associate themselves with, i.e., the

consonant-vowel (CV) combinations (Mekonnen A. et al.,

2018). Consider for instance the following individual

symbols:

በ(bä) ቡ(bu) ቢ(bi) ባ(ba) ቤ(be) ብ(b∂) ቦ(bo)

In Amharic, if string begins with a vowel then the

vowel is written independently; which means, there are no

symbols added to the individual vowels. In such cases as

affixation, a vowel may come in contact with a consonant

on its left side. The following are used as vowel (aka

አናባቢ, ʾänababi) characters.

ኧ(ä) ኡ(u) ኢ(i) ኣ(a) ኤ(e) እ(∂) ኦ(o)

At the time of formation, vowel will no longer be

considered independently but together with the

immediately preceding consonant forming a new unique

symbol. We can better clarify this by taking a case for the

declension of a noun for number by adding -ኦች(ʾočə) at

the end of the noun (Yimam B., 1997). As can be seen in

the example below the combination of ት and ኦ results in

ቶ.

ቤት(betə) + -ኦች(ʾočə) = ቤትኦች(betəʾočə)

Written as: ቤቶች (betočə)

ሰው(säwə) + -ኦች(ʾočə) = ሰዉኦች(säwuʾočə)

Written as: ሰዎች (säwočə)

Unlike majority of the languages in the GF library that

construct words by linearly concatenating morphemes,

https://dx.doi.org/10.22161/ijaers.78.39
http://www.ijaers.com/
https://github.com/Abe2G/AM-Vectors
https://abe2g.github.io/

International Journal of Advanced Engineering Research and Science (IJAERS) [Vol-7, Issue-8, Aug- 2020]

https://dx.doi.org/10.22161/ijaers.78.39 ISSN: 2349-6495(P) | 2456-1908(O)

www.ijaers.com Page | 360

Semitic languages have unique non-concatenative

properties in addition to the 27 conventional concatenative

modifications (Mekonnen A. et al., 2018).

In Amharic language, the end of a sentence is marked

by pair of colon (። አራት ነጥብ, ʾäratə nät'əbə). Whereas

exclamatory and interrogative sentence are ended by ‘!’

and ‘?’ punctuation marks respectively. The individual

words in a sentence are separated by colon (: ሁለት ነጥብ,

hulätə nät'əbə) or sometimes with whitespace character

(Yimam, B., 1997). In Amharic there are 9 homophonic

characters such as (ሀ, ኀ, ሐ, and ኸ), (ሰ and ሠ), (ጸ and ፀ),

(ው and ዉ) and (አ and ዓ), which has the same

pronunciation and meaning. Sometimes such characters are

used interchangeably in a language and this also makes it

challenging.

IV. DATASET PREPARATION

To ensure a high-quality product, diagrams and

lettering MUST be either computer-drafted or drawn using

India ink.

The quality of the word embeddings depends on

frequency of a word, which is related to the corpora size.

As the morphological richness of the language increases,

the vocabulary size increases and the average frequency of

every token decreases. Hence, it is important to collect and

prepare a large collection of monolingual corpora for

Amharic language to get high quality word embedding.

Table 1: Amharic Monolingual Dataset used to train word

vectors.

Domain #Tokens #Status

Wikipedia 102,307,356 Clean

Fictions and Academic

books (Offline)
55,879,654

Clean

Bible and other spiritual

data (Offline)
34,102,452

Clean

Different Amharic Blogs 68,204,904 Noisy

Facebook Posts Scraped 88,254,789 Noisy

Amharic News Article

(Walta, FanaBC, EBC,

BBC-Amharic, VOA

Amharic, Reporter)

122,768,827

Noisy

Other Legal and Official

Documents (Offline)
115,948,336

Clean

Walta Information

Center (WIC)
210,000

Noisy

JW300 68,204,904 Noisy

Habit-project

(amWaC17)
30,692,207

Noisy

Total 686,573,429 tokens

One of the big challenges for Amharic language is

unavailability of curated corpora off-the-shelf. Even if

Wikipedia is available for Amharic, the dumps are

relatively small in size (compared to the English).

However, for Amharic language, the proper data collection

technique can get a large text collection from Wikipedia,

social medias, newspapers, news portals, government

websites, etc. which can be a source of high-quality,

diverse monolingual corpora. Thus, crawling these sources

was our primary task to create large monolingual corpora

for Amharic. To get large coverage of word with domain

inclusiveness, we trained our Amharic word vectors using

the dataset composed over different offline and online

sources. Government websites, news, Facebook page posts,

blogs, Wikipedia, and publicly available Amharic text data

from HabitProject1, and OPSUS2 Amharic machine

translation dataset are used as online data source. Whereas

legal documents (constitution and other guiding rules),

fictions, academic books (grade 1st – 12th Amharic

language text book and modules of higher education),

spiritual offline documents, government office rules and

guiding principles are used as offline data source. We have

collected a dataset with more than 686.5 million token

collections. The detailed dataset and token coverage is

depicted at Table 1 above.

4.1 PREPROCESSING

As the data is collected from different source, we have

noticed a number of irregularities between tokens. Thus,

we performed series of preprocessing steps at token level

to canonize all tokens to a standard format. Using simple

regular expression, we tokenized each document into

sentences and then each sentence is preprocessed at word

level and stored to a file using one line per sentence format

to enable memory efficient batch iterator based training.

After tokenization, in order to minimize irregularities in

the dataset, we applied different forms of character level

normalization to standardize the dataset.

In Amharic, there are several characters that have the

same pronunciation and meaning with different structure.

For example, the word “Habtamu” (ሀብታሙ) can also be

written as ሐብታሙ, ሃብታሙ, ሓብታሙ ኀብታሙ and

1 https://habit-project.eu/wiki/HabitSystemFinal
2 http://opus.nlpl.eu/JW300.php

https://dx.doi.org/10.22161/ijaers.78.39
http://www.ijaers.com/

International Journal of Advanced Engineering Research and Science (IJAERS) [Vol-7, Issue-8, Aug- 2020]

https://dx.doi.org/10.22161/ijaers.78.39 ISSN: 2349-6495(P) | 2456-1908(O)

www.ijaers.com Page | 361

ኃብታሙ. In addition, Amharic words ends with a suffix

such as ቷል can also be written as ቱዋል or ቱአል. For

example, በልቷል can also be written as በልቱዋል or በልቱአል.

Thus, all homophonic characters are replaced into their

common forms: ሐ and ኀ are replaced with ሀ, ሠ with ሰ, ዐ

with አ, and ፀ with ጸ. We normalize any character under

such category to common canonical representation to avoid

unnecessary representation of single word in different

forms.

The other issue that needs attention is normalization of

punctuation marks. Different styles of punctuation marks

have been used in the data as most of the data sources are

noisy. For instance, for double quotation mark two single

quotation marks, “,”, ‹‹, ››, ``, ", « or » are used. Thus,

normalization of punctuation marks is a nontrivial matter.

We normalized all types of double quotes by ", all single

quotes by ', question marks (e.g., ？ and ፧) by ?, word

separators (e.g., : and ፡) by plain space, full stops (e.g., ::

and ፡፡) by ።, exclamation marks (e.g., ! and ！) by !,

hyphens (e.g., :-, and ፡—) by ፦, and commas (e.g., ፥ and ÷)

by ፣. All other punctuation marks and non-Amharic

characters are also removed.

In addition to character and punctuation marks

irregularities, we have also identified number notation

inconsistencies in Amharic document that are created

because of nature of the language. In Amharic numbers can

be written using Arabic or Amharic (Geez) numeral

notation. For example, 100 in Arabic can also be written as

፻ in Geez. To handle such inconsistency, we have

transformed all Arabic notations into Geez notation. In

addition, in writing shortened notation of long number is

also used in different scripts. For example, One Million

Five Hundred Thousand can be written as 1.5 ሚሊዮን (1.5

million). We expand numbers expressed in shortened form

to their equivalent long form of representation before

transforming the representation into Geez notation.

4.2 Models

We used both word2vec (Mikolov et al., 2013b) and

FastText (Bojanowski et al., 2017) models to train our

word vectors. In this section, we briefly describe the

models that we compare to train our word vectors.

4.3 Word2Vec

Word2Vec is the name given to a class of neural

network models with two layer that, given an unlabeled

training corpus, produce a vector for each word in the

corpus that encodes its semantic information. The

architecture of word2vec has two model variants:

continuous bag-of-words (CBOW) and SkipGram.

(Mikolov et al., 2013). In the CBOW architecture, the

model predicts the current word from a window of

surrounding context words whereas the skip-gram

architecture weighs nearby context words more heavily

than more distant context words. In word2vec model, every

word W in the dictionary V is mapped to a vector w(x),

which is a column (vector) in the matrix W. The CBOW

model predicts a word using its context , ⋯, ,

 ,⋯, . A vector representation h of this context is

obtained by averaging the corresponding word vectors:

 (1)

, where

are the word vectors.

Mikolov et al. (2013) also introduced the Skip-gram

architecture built on a single hidden layer neural network

to learn efficiently a vector representation for each word w

of a vocabulary V from a large corpora of size C. Skip-

gram iterates over all (target, context) pairs () from

every window of the corpus and tries to predict

knowing . The objective function is therefore to

maximize the log likelihood:

 (2)

, where n represents the size of the window (composed

of n words around the central word .

4.4 FastText

Bojanowski et al. (2017), introduced another

unsupervised word representation as an extension to

word2vec model in order to take into account internal word

structure with character n-grams and improve the

representation of rare words. Similar to Mikolov et al.

(2013), fasttext also has both cbow and skipgram

architecture. But the author recommended using skipgram

model than cbow. To this end, they train a Skipgram

architecture to predict a word w from C given the central

word and all the n-grams (subwords of 3 up to 6

charcters) of . The objective function becomes:

 (3)

https://dx.doi.org/10.22161/ijaers.78.39
http://www.ijaers.com/

International Journal of Advanced Engineering Research and Science (IJAERS) [Vol-7, Issue-8, Aug- 2020]

https://dx.doi.org/10.22161/ijaers.78.39 ISSN: 2349-6495(P) | 2456-1908(O)

www.ijaers.com Page | 362

 where n is the size of window on which the model

includes as context for the central word . Here, along

learning one vector per word as of word2vec, fastText also

learns one vector per n-gram. FastText is able to extract

more semantic relations between words that share common

n-gram(s) or morphological variants of a word which can

also help to provide good embedding for rare words since

we can obtain a vector by summing vectors of its n-grams.

Particularly, this subword consideration helps

morphologically rich languages such as Amharic, Arabic,

Hebrew, etc. to capture vector for word with similar

semantic relation in to vocabulary word but differs with its

formation.

4.6 Word Embedding Experimental Setups

Genism3 python is used to train and evaluate analogy

for both word2vec and FastText models. First, we used

default hyper parameters based on recommendation of the

original paper (Mikolov et al., 2013). Then, we also tested

our model with different parameter settings to check

whether increasing window size, epochs and sampling

techniques has effect on learning or not following. We

used 5 as minimum count to discard words that appear less

than minimum count times with 1e-5 threshold to

randomly down-sample highly frequent words. The hyper

parameter settings we used in our work are described

below:

Increasing window size: this parameter depicts the

maximum distance between the current and predicted word

within a sentence. We started with 5 window size and

checked up to 10 window size. Our experiment has shown

that increasing window size has no significant effect and

we recommend using the size between 6 to 10 is enough

for Amharic to include sentences with large word sequence

length.

Increasing n-gram (for FastText) size: other than

default 3 to 6 characters, we used 3 to 10 characters to

make it more appropriate for morphologically rich

Amharic language. The experiment shows that increasing

subword size helps to improve the performance on

syntactically rich languages. In our experiment, FastText

model trained in 3 to 10 character range better performed

on syntactic level word analogy.

Word embedding dimension: we used 100, 200, and

300 word embedding size. In our experiment, both

word2vec and FastText model with 200 dimensions has

comparatively improved performance for both intrinsic and

extrinsic task evaluation as compared to 100 and 300

3 https://radimrehurek.com/gensim/index.html

dimensions. The vector with 300 dimensions is the one

with less performed model in our extrinsic task evaluation.

Increasing training epochs: We started with default

parameter by FastText library trains models, which is 5

epochs and then used more epochs (iterations of training)

to train the models. Here, we propose to use in range of 10

to 15 epochs.

Increasing negatives: By default, the FastText library

samples 5 negative examples. We tested to different value

in range of 5 and 15 and as proposed by (Bojanowski et al.,

2017), we also propose to use 10.

One of contribution in this work is usage of Sub-word

tokenization to train word2vec models. Word2vec models

are criticized for ignoring the internal structures of words

as compared to other character n-gram augmenting models

such as FastText. Especially for languages with rich

morphology such as Amharic, considering word as basic

unit maximizes probability of OOV words. Thus,

incorporating morphological variants of a word through

systematic learning is required. Today, using sub-word

units such as character, character n-grams or Byte Pair

Encodings (BPE) to address the problem of out-of-

vocabulary words in NLP is popular in word representation

tasks (Sennrich et al., 2016; Bojanowski et al., 2017).

However, global vector of such sub-word units is not

further investigated other than using in specific

downstream tasks. Following Kudo T. and Richardson J.,

2018, we trained word2vec model in SentencePiece

tokenized sub-words. To consider character level tasks, we

released our embedding with 25, 50, 100, 200 and 300

dimensions.

4.7 Evaluation

We used both intrinsic (word analogy) and extrinsic

(Amharic downstream task: Neural POS Tagger)

evaluation. For all the evaluation we have used, Amharic

embedding’s from Al-Rfou et al. (2013) and Grave et al.

(2018) as baseline.

4.8 Intrinsic Evaluation

4.8.1 Word Analogy Evaluation

One of commonly used word embedding evaluation

approach for intrinsic evaluation is word analogy. This

evaluation directly test for syntactic or semantic

relationships between words. This approach was

popularized by Mikolov et al. (2013a). Analogy datasets is

used to evaluate semantic and syntactic ability of the word

embedding. One of the contributions of this work is the

introduction of word analogy datasets for Amharic

language. Following Mikolov et al. (2013a), we prepared a

dataset that contain a collection of semantic and syntactic

https://dx.doi.org/10.22161/ijaers.78.39
http://www.ijaers.com/
https://radimrehurek.com/gensim/index.html

International Journal of Advanced Engineering Research and Science (IJAERS) [Vol-7, Issue-8, Aug- 2020]

https://dx.doi.org/10.22161/ijaers.78.39 ISSN: 2349-6495(P) | 2456-1908(O)

www.ijaers.com Page | 363

relationship of words. The dataset is composed of four

words separated with whitespace, of the form of

በርሊን(berlin) : ጀርመን(Germany) :: ካይሮ(Cairo) :

ግብጽ(Egypt). Total of 311 analogies are prepared by

considering different morphological variants of a language

and semantic analogies. The dataset contains opposite

words, plural-nouns, future tense formations, past tense

formations, past-participle formations, present-participle

formations, actions-verbs, continent analogy, language

analogy, nationality analogy, adjective-to-adverb mapping

analogy, family analogy, currency and capital-common-

countries classes. In general, given a triplet of words A :

B :: C, the goal of word analogy is to find the word D for a

given word C such that A : B and C : D share the same

relation.

Table 2: Performance of the various word vectors on the

word analogy task.

Models Embedding

Dimension

Word Analogy

(Average

Accuracy)

FastText

Grave et al. (2018)

300D 11.02

Word2Vec-CBOW 100D 11.02

200D 16.04

300D 20.6

Word2Vec -SkipGram 100D 18.7

200D 18.9

300D 19.56

FastText-CBOW 100D 18.5

200D 22.05

300D 24.08

FastText-SkipGram 100D 16.9

200D 17.45

300D 16.07

The values of word analogy column are average

accuracies in percentage. We only reported model trained

with our proposed hyper-parameter settings.

According to the results, all models outperformed the

baseline Grave et al. (2018). The one with best accuracy is

FastText model trained with 300D, which improved

+13.06 from the baseline FastText model. In all

experiments for both word2vec and FastText models, our

CBOW model outperformed skipgram.

4.9 Extrinsic Evaluation

Apart from the analogy task, we have also conducted

extrinsic evaluation using neural Amharic part-of-speech

tagger. The task is selected based on availability of public

dataset. The following sections briefs the model

architectures of Amharic neural POS tagger.

4.9.1 Amharic Neural Part of Speech Tagger

We adopted a dataset from (Girma A. et al., 2006) as a

training corpus. We grouped the dataset into 20, 10, and 70

splits for testing, validation and training sets respectively.

Since our aim is to evaluate the performance of our word

vectors in Amharic part of speech tagger task, we have

create simple two layer bidirectional LSTM based neural

network architecture to encode sentence and predict tags.

We trained the same architecture for all word vectors

(excluding sentence piece trained model) and compared

our word vectors with Amharic word vectors released by

Grave et al. (2018).

Table 3: Performance of Sub-word tokenized word2vec

model in POS tagger task.

Model Dimension POS Tagger

(Test Accuracy)

BPEembed (Kudo

T. and Richardson J.,

2018)

50D 0.902

100D 0.925

SentencePiece-

Word2Vec

50D 0.947

100D 0.951

To evaluate sub-word embedding’s in POS tagging

task, due to SentencePiece tokenizer we must take special

care for the correct alignment of token to tag. We keep tags

of original word to each tokenized sub-word units which

can then be used to project labels to the tokenized

representation. Table 3 above depicts our model

performance on neural POS tagging task using sub-word

tokenized word2vec model. From over all, extrinsic

evaluation, our sub-word embedding outperformed the

baseline BPEembed with +3 in 100D and +4 in 50D. This

is because our tokenizer plus word embedding models are

trained in wide data coverage.

https://dx.doi.org/10.22161/ijaers.78.39
http://www.ijaers.com/

International Journal of Advanced Engineering Research and Science (IJAERS) [Vol-7, Issue-8, Aug- 2020]

https://dx.doi.org/10.22161/ijaers.78.39 ISSN: 2349-6495(P) | 2456-1908(O)

www.ijaers.com Page | 364

Table 4: Performance of the various word vectors on

extrinsic POS tagger task

Models Dimension POS

Tagger

FastText Grave et al.

(2018)

300D 0.91

W2V-CBOW 100D 0.92

200D 0.944

300D 0.93

W2V-SkipGram 100D 0.925

200D 0.931

300D 0.90

FastText-CBOW 100D 0.944

200D 0.952

300D 0.935

FastText-SkipGram 100D 0.89

200D 0.90

300D 0.93

The values of word analogy and word detection column

are average accuracies in percentage. We only reported

model trained with our proposed hyper-parameter settings.

The experiment on word level word2vec and FastText

models also performed promising accuracy for

morphologically rich Amharic language part of speech

tagging. Similar to word analogy, our model also

performed interesting improvement in test set when

compared to base line FastText model (Grave et al., 2018).

4.10 Visualizing Word Embedding

To evaluate how our word vectors cluster syntactically

and semantically related words, we visualized few

neighbor word using Tensorboard TSNE4. We created

python function called plot_vector that read our embedding

vector binary file and extract vocabulary words from

embedding file. Then we created non-trainable TensorFlow

model and defined TensorFlow 2D tensor variable that

holds our embedding. Finally, we associated metadata with

our word embedding. Then we run Tensorboard by

referring the log directory of metadata. Because of limited

computational resource, we visualized only few word

space.

4 wwww.tensorflow.org/tensorboard

The visualization depicted interesting feature of our

word to cluster words to their semantic space. As depicted

in Figure 1, Amharic words such ወር(wärə), ቀን(qänə),

ሰዓት(säʾatə) to one category using as time measurement as

semantic class. We can also see that ሜትር(metərə) and

ኪሎ(kilo) are clustered together. Number categories such

as ሚሊየን(miliyänə), ቢሊዮን(biliyonə),

Fig.1: Visualizing word2vec 200D vectors to see how

the model cluster semantically related words

Fig.2: Visualizing FastText 200D vectors

https://dx.doi.org/10.22161/ijaers.78.39
http://www.ijaers.com/

International Journal of Advanced Engineering Research and Science (IJAERS) [Vol-7, Issue-8, Aug- 2020]

https://dx.doi.org/10.22161/ijaers.78.39 ISSN: 2349-6495(P) | 2456-1908(O)

www.ijaers.com Page | 365

ትሪሊዮን(təriliyonə), and ሺህ(šihə) to one cluster;

percentage indicators such as በአማካይ(bäʾämakayə) and

በመቶ(bämäto); financial terms such as ክፍያ(kəfəya)

ወጪ(wäč'i) and ገቢ(gäbi) at one category.

This show the performance of our word vectors in

capturing semantic relationship between words. As

depicted in Figure 2 below, our FastText model clustered

words with different morphological variations and having

the same meaning in to similar vector space.

The model also clustered synonym words to one

category. For example, words like ድርጅት(dərəǧətə) and

ተቋም(täqwamə), ከተማ(kätäma), ስፍራ(səfəra),

መንደር(mänədärə), and አካባቢ(äkababi),

መመሪያ(mämäriya), ህግ(həgə), and ሰነድ(sänädə) are

grouped in similar space with the same derivational forms

in a way that shows the quality of our word vectors to

predict word analogy. In addition, visualization in Figure 3

also depicts our word2vec model can also capture word

morphology.

Fig.3: Visualizing word2vec 200D vectors for morphology

V. CONCLUSION

In this work, we contribute word vectors trained on

varieties of online and offline sources, as well new

analogy datasets to evaluate these models. We study the

effect of various hyper parameters on the performance of

the trained models, showing how to obtain high quality

word vectors. In addition, we also created sub-word

embedding using word2vec model. Here we get advantage

of word2vec semantic similarity detection ability and

capture syntactic features with sub-word embedding.

We also released Amharic SentencePiece tokenizer

model that can be used for subsequent NLP tasks. Our

evaluation shows that our models can generate quality

vectors for Amharic words and proved the vectors are

trained over large and curated data with wide coverage

from online and offline sources. As future work, we would

like to explore more techniques to improve the quality of

models for Amharic and other Ethiopic languages

including creation of contextualized transformer models.

REFERENCES

[1] Al-Rfou, R., Perozzi, B., and Skiena, S. (2013). Polyglot:

Distributed word representations for multilingual

nlp. Proc. CoNLL.

[2] Bojanowski, P., Grave, E., Joulin, A., and Mikolov, T.

(2017). Enriching word vectors with subword information.

Transactions of the Association for Computational

Linguistics, 5.

[3] Girma A. Demeke G., Mesfin G.. (2006). Manual annotation

of Amharic news items with part-of-speech

tags and its challenges. Ethiopian Languages Research

Center Working Papers, 2, pages: 1-16.

[4] Mikolov, T., Chen, K., Corrado, G. D., and Dean, J.

(2013a). Efficient estimation of word representations in

vector space. arXiv preprint arXiv:1301.3781.

[5] Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and

Dean, J. (2013b). Distributed representations of words

and phrases and their compositionality. In Adv. NIPS.

[6] Mikolov, T., Grave, E., Bojanowski, P., Puhrsch, C., and

Joulin, A. (2017). Advances in pre-training distributed

word representations. arXiv preprint arXiv:1712.09405.

[7] Pennington, J., Socher, R., and Manning, C. (2014).

Glove: Global vectors for word representation. In Proc.

EMNLP.

[8] Sennrich, R., Haddow, B., and Birch, A. (2016). Neural

machine translation of rare words with subword units. In

Proceedings of the 54th Annual Meeting of the Association

for Computational Linguistics (Volume 1: Long Papers),

pages 1715–1725, Berlin, Germany, August. Association for

Computational Linguistics

[9] Yimam, B. (1997). Yamariñña Säwasäw(Amharic

Grammar). Journal of Ethiopian Studies, 28(2), pages 55-60,

Institute of Ethiopian Studies.

[10] Hudson, G. (2009) "Amharic". The World's Major

Language, pages. 594–617, Print. Ed. Comrie, Bernard.

Oxon and New York: Routledge.

[11] Mekonnen A., Ephrem B., Gasser M., Nürnberger A., (2018)

Contemporary Amharic Corpus: Automatically Morpho-

Syntactically Tagged Amharic Corpus, Proceedings of the

First Workshop on Linguistic Resources for Natural

Language Processing, pages 65–70 Santa Fe, New Mexico,

USA

[12] Heinzerling B. and Strube M. (2018) BPEmb: Tokenization-

free Pre-trained Subword Embeddings in 275 Languages,

Proceedings of the Eleventh International Conference on

https://dx.doi.org/10.22161/ijaers.78.39
http://www.ijaers.com/

International Journal of Advanced Engineering Research and Science (IJAERS) [Vol-7, Issue-8, Aug- 2020]

https://dx.doi.org/10.22161/ijaers.78.39 ISSN: 2349-6495(P) | 2456-1908(O)

www.ijaers.com Page | 366

Language Resources and Evaluation (LREC), Miyazaki,

Japan

[13] Kudo T. and Richardson J. (2018), SentencePiece: A simple

and language independent subword tokenizer and

detokenizer for Neural Text Processing, Proceedings of the

2018 Conference on Empirical Methods in Natural

Language Processing (System Demonstrations), pages 66–71

Brussels, Belgium, August. Association for Computational

Linguistics

[14] Grave1 E., Bojanowski1 P., Gupta P., Armand J. Mikolov T.

(2018), Learning Word Vectors for 157 Languages,

arXiv:1802.06893

[15] Pennington J., Socher R., and Christopher D. Manning.

(2014). GloVe: Global Vectors for Word Representation.

https://dx.doi.org/10.22161/ijaers.78.39
http://www.ijaers.com/
https://nlp.stanford.edu/pubs/glove.pdf

