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Abstract— The availability of pre-trained word embedding models (also known as word vectors) 

empowered many tasks in natural language processing, leading to state-of-the-art performance. A key 

ingredient to the successful application of these distributed word representations is the existence of large 

curated corpora to train them and use the pre-trained models in downstream tasks. In this paper, we 

describe how we trained such quality word representations for one of less-resourced Ethiopian languages, 

Amharic. We used several offline and online data sources and created 100, 200, and 300-dimension 

word2vec and FastText word vectors. We also introduced new word analogy dataset to evaluate word 

vectors for Amharic language. In addition, we created Amharic sentence piece model, which can be used to 

decode and encode words for subsequent NLP tasks. Using this SentencePiece model, we created Amharic 

sub-word word2vec embedding with 25, 50, 100, 200, and 300 dimensions trained over our large curated 

dataset. Finally, we evaluate our pre-trained word vectors on both intrinsic word analogy and extrinsic 

downstream natural language processing task. The result shows promising performance for both intrinsic 

and extrinsic evaluations as compared to previously released model.  

Keywords— Amharic, word vectors, fasttext, word2vec. 

 

I. INTRODUCTION 

The introduction of the paper should explain the nature 

of the problem, previous work, purpose, and the 

contribution of the paper. The contents of each section may 

be provided to understand easily about the paper. 

Learning distributed word representations using neural 

models such as word2vec (Mikolov et al., 2013b) and 

FastText (Bojanowski et al., 2017) have been widely used 

in natural language processing and shown promising 

progress over conventional approaches. The existence of 

freely available Wikipedia data for most languages 

supported the ability of learning from large amounts of 

texts. Publicly available models for resourced languages, 

which are pre-trained on large amounts of data through 

unsupervised learning, have become a key component of 

many neural language understanding models. However, 

Amharic is not benefited from such an advancement due to 

lack of large curated data collection over web. While most 

interesting neural architectures are massively introduced 

for English, but lack of data and pure word vector barely 

represented Amharic language for this domain.  

The large text collection from Wikipedia and common 

crawl are commonly used data source to train and learn 

word vectors (Al-Rfou et al., 2013; Bojanowski et al., 

2017) for many languages. Unfortunately, the size of 

Wikipedia is relatively small and often not enough to learn 

high quality word vectors with wide coverage for many 

less-resourced languages including Amharic. While 

common crawl can be used as an alternative solution to get 

large text with a broader coverage, its data content is 

noisier than Wikipedia articles (Bojanowski et al., 2017).  

As part of building 157 language word vectors project, 

Facebook released a pre-trained embedding for Amharic 

language. The Polyglot project (Al-Rfou et al., 2013) also 

provides pre-trained embedding trained on Wikipedia. 

While word vectors with about 3K vocabularies of 

Amharic language is included with Al-Rfou et al. (2013) 

and Grave et al. (2018) work, most of the words in the 

vocabulary are non-Amharic words. This is happened 

because of the dataset is not well prepared. Moreover, as 

mentioned above, Wikipedia is not rich to train word 

vectors for most less-resourced countries. In addition, none 

of the above authors evaluated Amharic word vectors. 

Thus, preparation of large and curated text collection from 

different available online and offline data sources and 

learning quality word vectors is required for empowering 

semantic word understanding of Amharic NLP tasks. 
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We contributed a high-quality word vectors for 

Amharic language using different word embedding models 

trained over varieties of online and offline data sources. 

We used Wikipedia, government websites, news articles, 

Facebook page posts, blogs, explicitly published Amharic 

text corpora for different NLP tasks, legal documents, 

fictions, academic books, and spiritual offline documents 

as data source to train and learn word vectors of both 

FastText and word2vec models in 100, 200 and 300 

dimensions. We evaluated our word vectors with intrinsic 

word analogy task and extrinsic neural part of speech 

tagger task. We have also introduced new word analogy 

dataset that contain both semantic and syntactic word 

formations for Amharic language.  

While pre-trained word embeddings are publicly 

available, vectors for sub-word are commonly trained on a 

per-task basis or used with dummy vector values using 

one-hot-vectors. Heinzerling B. and Strube M. (2018), 

released pre-trained sub-word embeddings in 275 

languages which is trained by Wikipedia dumps using BPE 

tokenizer and GloVe (Pennington J. et al., 2014) model. 

Amharic sub-word GloVe vector is also released as part of 

their work. However, less quality of Wikipedia dataset and 

standard evaluation made it difficult to use. We trained 

sub-word tokenizer over our raw dataset for using open 

source SentencePiece library (Kudo T. and Richardson J., 

2018) that can be also used as sub-word segmenting model 

for other Amharic NLP downstream tasks. Using our 

SentencePiece model, we have also released Amharic sub-

word word2vec embedding with 25, 50, 100, 200, and 300 

dimension trained in our curated quality and large coverage 

dataset and evaluated in neural Amharic-English 

downstream task. All Amharic learned word vectors we 

trained can be accessed from 

https://github.com/Abe2G/AM-Vectors and the code used 

to normalize Amharic text, train and evaluate word vector 

embedding is publicly available at https://abe2g.github.io/. 

 

II. RELATED WORK 

Several monolingual pre-trained word vectors have 

been released for different languages together with open 

source implementation of word embedding models. 

English word vectors trained on a part of the Google News 

dataset (100B tokens) were published with word2vec 

(Mikolov et al., 2013b). Pennington et al. (2014) released 

GloVe models trained on Wikipedia, Gigaword and 

Common Crawl (840B tokens). Al-Rfou et al. (2013), in 

which word vectors have been trained for 100 languages 

using Wikipedia data. Grave et al. (2018) released FastText 

word vectors for 157 languages trained over Wikipedia and 

Common Crawl. 

 

III. AMERHARIC LANGUAGE 

Amharic (አማርኛ,ʾämarəña) is an official working 

language of Ethiopian government spoken by over 100M 

people all over the country. The Amharic script is known 

as Ge’ez or Ethiopic. The writing system is called Fidäl 

(ፊደል) in Ethiopian Semitic languages. Fidäl means 

"script", "alphabet", "letter", or "character" or abugida 

(አቡጊዳ), from the first four symbols. Fidäl is a syllabary 

writing system where the consonants and vowels co-exist 

within each graphic symbol (Hudson, G., 2009). Unlike 

majority of its Semitic scripts, such as Arabic and Hebrew, 

fidäl is written from left to right. The writing system 

consists of 33 consonants, each having seven “orders” or 

shapes depending on the vowel with which a given 

consonant is combined. These are arranged into seven 

houses (orders) according to the kind of each vowel that 

the consonants associate themselves with, i.e., the 

consonant-vowel (CV) combinations (Mekonnen A. et al., 

2018). Consider for instance the following individual 

symbols: 

በ( bä) ቡ( bu) ቢ( bi) ባ( ba) ቤ( be) ብ( b∂) ቦ( bo) 

In Amharic, if string begins with a vowel then the 

vowel is written independently; which means, there are no 

symbols added to the individual vowels. In such cases as 

affixation, a vowel may come in contact with a consonant 

on its left side. The following are used as vowel (aka 

አናባቢ, ʾänababi) characters.  

ኧ( ä) ኡ(u) ኢ(i) ኣ(a) ኤ(e) እ(∂) ኦ( o) 

At the time of formation, vowel will no longer be 

considered independently but together with the 

immediately preceding consonant forming a new unique 

symbol. We can better clarify this by taking a case for the 

declension of a noun for number by adding -ኦች(ʾočə) at 

the end of the noun (Yimam B., 1997). As can be seen in 

the example below the combination of ት and ኦ results in 

ቶ. 

ቤት(betə) + -ኦች(ʾočə) = ቤትኦች(betəʾočə) 

Written as: ቤቶች (betočə) 

ሰው(säwə) + -ኦች(ʾočə) = ሰዉኦች(säwuʾočə) 

Written as: ሰዎች (säwočə) 

Unlike majority of the languages in the GF library that 

construct words by linearly concatenating morphemes, 
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Semitic languages have unique non-concatenative 

properties in addition to the 27 conventional concatenative 

modifications (Mekonnen A. et al., 2018). 

In Amharic language, the end of a sentence is marked 

by pair of colon (። አራት ነጥብ, ʾäratə nät'əbə). Whereas 

exclamatory and interrogative sentence are ended by ‘!’ 

and ‘?’ punctuation marks respectively. The individual 

words in a sentence are separated by colon (: ሁለት ነጥብ, 

hulätə nät'əbə) or sometimes with whitespace character 

(Yimam, B., 1997). In Amharic there are 9 homophonic 

characters such as (ሀ, ኀ, ሐ, and ኸ), (ሰ and ሠ), (ጸ and ፀ), 

(ው and ዉ) and (አ and ዓ), which has the same 

pronunciation and meaning. Sometimes such characters are 

used interchangeably in a language and this also makes it 

challenging. 

 

IV. DATASET PREPARATION 

To ensure a high-quality product, diagrams and 

lettering MUST be either computer-drafted or drawn using 

India ink.  

The quality of the word embeddings depends on 

frequency of a word, which is related to the corpora size. 

As the morphological richness of the language increases, 

the vocabulary size increases and the average frequency of 

every token decreases. Hence, it is important to collect and 

prepare a large collection of monolingual corpora for 

Amharic language to get high quality word embedding.  

Table 1: Amharic Monolingual Dataset used to train word 

vectors. 

Domain #Tokens #Status 

Wikipedia  102,307,356 Clean 

Fictions and Academic 

books (Offline) 
55,879,654 

Clean 

Bible and other spiritual 

data (Offline) 
34,102,452 

Clean 

Different Amharic Blogs 68,204,904 Noisy 

Facebook Posts Scraped 88,254,789 Noisy 

Amharic News Article 

(Walta, FanaBC, EBC, 

BBC-Amharic, VOA 

Amharic, Reporter) 

122,768,827 

Noisy 

Other Legal and Official 

Documents (Offline) 
115,948,336 

Clean 

Walta Information 

Center (WIC)   
210,000 

Noisy 

JW300 68,204,904 Noisy 

Habit-project 

(amWaC17) 
30,692,207 

Noisy 

Total 686,573,429 tokens 

 

One of the big challenges for Amharic language is 

unavailability of curated corpora off-the-shelf. Even if 

Wikipedia is available for Amharic, the dumps are 

relatively small in size (compared to the English). 

However, for Amharic language, the proper data collection 

technique can get a large text collection from Wikipedia, 

social medias, newspapers, news portals, government 

websites, etc. which can be a source of high-quality, 

diverse monolingual corpora. Thus, crawling these sources 

was our primary task to create large monolingual corpora 

for Amharic. To get large coverage of word with domain 

inclusiveness, we trained our Amharic word vectors using 

the dataset composed over different offline and online 

sources. Government websites, news, Facebook page posts, 

blogs, Wikipedia, and publicly available Amharic text data 

from HabitProject1, and OPSUS2 Amharic machine 

translation dataset are used as online data source. Whereas 

legal documents (constitution and other guiding rules), 

fictions, academic books (grade 1st – 12th Amharic 

language text book and modules of higher education), 

spiritual offline documents, government office rules and 

guiding principles are used as offline data source. We have 

collected a dataset with more than 686.5 million token 

collections. The detailed dataset and token coverage is 

depicted at Table 1 above.  

4.1 PREPROCESSING 

As the data is collected from different source, we have 

noticed a number of irregularities between tokens. Thus, 

we performed series of preprocessing steps at token level 

to canonize all tokens to a standard format. Using simple 

regular expression, we tokenized each document into 

sentences and then each sentence is preprocessed at word 

level and stored to a file using one line per sentence format 

to enable memory efficient batch iterator based training.  

After tokenization, in order to minimize irregularities in 

the dataset, we applied different forms of character level 

normalization to standardize the dataset.  

In Amharic, there are several characters that have the 

same pronunciation and meaning with different structure. 

For example, the word “Habtamu” (ሀብታሙ) can also be 

written as ሐብታሙ, ሃብታሙ, ሓብታሙ ኀብታሙ and 

                                                           
1 https://habit-project.eu/wiki/HabitSystemFinal 
2 http://opus.nlpl.eu/JW300.php 
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ኃብታሙ. In addition, Amharic words ends with a suffix 

such as ቷል can also be written as ቱዋል or ቱአል. For 

example, በልቷል can also be written as በልቱዋል or በልቱአል.  

Thus, all homophonic characters are replaced into their 

common forms: ሐ and ኀ are replaced with ሀ, ሠ with ሰ, ዐ 

with አ, and ፀ with ጸ. We normalize any character under 

such category to common canonical representation to avoid 

unnecessary representation of single word in different 

forms. 

The other issue that needs attention is normalization of 

punctuation marks. Different styles of punctuation marks 

have been used in the data as most of the data sources are 

noisy. For instance, for double quotation mark two single 

quotation marks, “,”, ‹‹, ››, ``, ", « or » are used. Thus, 

normalization of punctuation marks is a nontrivial matter. 

We normalized all types of double quotes by ", all single 

quotes by ', question marks (e.g., ？ and ፧) by ?, word 

separators (e.g., : and ፡) by plain space, full stops (e.g., :: 

and ፡፡) by ።, exclamation marks (e.g., ! and ！ ) by !, 

hyphens (e.g., :-, and ፡—) by ፦, and commas (e.g., ፥ and ÷) 

by ፣. All other punctuation marks and non-Amharic 

characters are also removed.  

In addition to character and punctuation marks 

irregularities, we have also identified number notation 

inconsistencies in Amharic document that are created 

because of nature of the language. In Amharic numbers can 

be written using Arabic or Amharic (Geez) numeral 

notation. For example, 100 in Arabic can also be written as 

፻ in Geez. To handle such inconsistency, we have 

transformed all Arabic notations into Geez notation. In 

addition, in writing shortened notation of long number is 

also used in different scripts. For example, One Million 

Five Hundred Thousand can be written as 1.5 ሚሊዮን (1.5 

million). We expand numbers expressed in shortened form 

to their equivalent long form of representation before 

transforming the representation into Geez notation.  

4.2 Models 

We used both word2vec (Mikolov et al., 2013b) and 

FastText (Bojanowski et al., 2017) models to train our 

word vectors. In this section, we briefly describe the 

models that we compare to train our word vectors.  

4.3 Word2Vec 

Word2Vec is the name given to a class of neural 

network models with two layer that, given an unlabeled 

training corpus, produce a vector for each word in the 

corpus that encodes its semantic information. The 

architecture of word2vec has two model variants: 

continuous bag-of-words (CBOW) and SkipGram. 

(Mikolov et al., 2013). In the CBOW architecture, the 

model predicts the current word from a window of 

surrounding context words whereas the skip-gram 

architecture weighs nearby context words more heavily 

than more distant context words. In word2vec model, every 

word W in the dictionary V is mapped to a vector w(x), 

which is a column (vector) in the matrix W. The CBOW 

model predicts a word  using its context , ⋯, , 

 ,⋯, . A vector representation h of this context is 

obtained by averaging the corresponding word vectors: 

                                                                (1) 

, where 
 
are the word vectors. 

Mikolov et al. (2013) also introduced the Skip-gram 

architecture built on a single hidden layer neural network 

to learn efficiently a vector representation for each word w 

of a vocabulary V from a large corpora of size C. Skip-

gram iterates over all (target, context) pairs  ( ) from 

every window of the corpus and tries to predict  

knowing . The objective function is therefore to 

maximize the log likelihood:  

 

                             (2) 

 

, where n represents the size of the window (composed 

of n words around the central word . 

4.4 FastText 

Bojanowski et al. (2017), introduced another 

unsupervised word representation as an extension to 

word2vec model in order to take into account internal word 

structure with character n-grams and improve the 

representation of rare words. Similar to Mikolov et al. 

(2013), fasttext also has both cbow and skipgram 

architecture. But the author recommended using skipgram 

model than cbow. To this end, they train a Skipgram 

architecture to predict a word w from C given the central 

word   and all the n-grams   (subwords of 3 up to 6 

charcters) of . The objective function becomes: 

 

             (3)                                      
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 where n is the size of window on which the model 

includes as context for the central word .  Here, along 

learning one vector per word as of word2vec, fastText also 

learns one vector per n-gram. FastText is able to extract 

more semantic relations between words that share common 

n-gram(s) or morphological variants of a word which can 

also help to provide good embedding for rare words since 

we can obtain a vector by summing vectors of its n-grams. 

Particularly, this subword consideration helps 

morphologically rich languages such as Amharic, Arabic, 

Hebrew, etc. to capture vector for word with similar 

semantic relation in to vocabulary word but differs with its 

formation. 

4.6 Word Embedding Experimental Setups 

Genism3 python is used to train and evaluate analogy 

for both word2vec and FastText models. First, we used 

default hyper parameters based on recommendation of the 

original paper (Mikolov et al., 2013). Then, we also tested 

our model with different parameter settings to check 

whether increasing window size, epochs and sampling 

techniques has effect on learning or not following. We 

used 5 as minimum count to discard words that appear less 

than minimum count times with 1e-5 threshold to 

randomly down-sample highly frequent words. The hyper 

parameter settings we used in our work are described 

below: 

Increasing window size: this parameter depicts the 

maximum distance between the current and predicted word 

within a sentence. We started with 5 window size and 

checked up to 10 window size. Our experiment has shown 

that increasing window size has no significant effect and 

we recommend using the size between 6 to 10 is enough 

for Amharic to include sentences with large word sequence 

length.  

Increasing n-gram (for FastText) size: other than 

default 3 to 6 characters, we used 3 to 10 characters to 

make it more appropriate for morphologically rich 

Amharic language. The experiment shows that increasing 

subword size helps to improve the performance on 

syntactically rich languages. In our experiment, FastText 

model trained in 3 to 10 character range better performed 

on syntactic level word analogy. 

Word embedding dimension: we used 100, 200, and 

300 word embedding size. In our experiment, both 

word2vec and FastText model with 200 dimensions has 

comparatively improved performance for both intrinsic and 

extrinsic task evaluation as compared to 100 and 300 

                                                           
3 https://radimrehurek.com/gensim/index.html  

dimensions. The vector with 300 dimensions is the one 

with less performed model in our extrinsic task evaluation.  

Increasing training epochs: We started with default 

parameter by FastText library trains models, which is 5 

epochs and then used more epochs (iterations of training) 

to train the models. Here, we propose to use in range of 10 

to 15 epochs.  

Increasing negatives: By default, the FastText library 

samples 5 negative examples. We tested to different value 

in range of 5 and 15 and as proposed by (Bojanowski et al., 

2017), we also propose to use 10. 

One of contribution in this work is usage of Sub-word 

tokenization to train word2vec models. Word2vec models 

are criticized for ignoring the internal structures of words 

as compared to other character n-gram augmenting models 

such as FastText. Especially for languages with rich 

morphology such as Amharic, considering word as basic 

unit maximizes probability of OOV words. Thus, 

incorporating morphological variants of a word through 

systematic learning is required. Today, using sub-word 

units such as character, character n-grams or Byte Pair 

Encodings (BPE) to address the problem of out-of-

vocabulary words in NLP is popular in word representation 

tasks (Sennrich et al., 2016; Bojanowski et al., 2017). 

However, global vector of such sub-word units is not 

further investigated other than using in specific 

downstream tasks. Following Kudo T. and Richardson J., 

2018, we trained word2vec model in SentencePiece 

tokenized sub-words. To consider character level tasks, we 

released our embedding with 25, 50, 100, 200 and 300 

dimensions. 

4.7 Evaluation 

We used both intrinsic (word analogy) and extrinsic 

(Amharic downstream task: Neural POS Tagger) 

evaluation. For all the evaluation we have used, Amharic 

embedding’s from Al-Rfou et al. (2013) and Grave et al. 

(2018) as baseline. 

4.8 Intrinsic Evaluation 

4.8.1 Word Analogy Evaluation 

One of commonly used word embedding evaluation 

approach for intrinsic evaluation is word analogy. This 

evaluation directly test for syntactic or semantic 

relationships between words. This approach was 

popularized by Mikolov et al. (2013a). Analogy datasets is 

used to evaluate semantic and syntactic ability of the word 

embedding. One of the contributions of this work is the 

introduction of word analogy datasets for Amharic 

language. Following Mikolov et al. (2013a), we prepared a 

dataset that contain a collection of semantic and syntactic 
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relationship of words. The dataset is composed of four 

words separated with whitespace, of the form of 

በርሊን(berlin) : ጀርመን(Germany) :: ካይሮ(Cairo) : 

ግብጽ(Egypt). Total of 311 analogies are prepared by 

considering different morphological variants of a language 

and semantic analogies. The dataset contains opposite 

words, plural-nouns, future tense formations, past tense 

formations, past-participle formations, present-participle 

formations, actions-verbs, continent analogy, language 

analogy, nationality analogy, adjective-to-adverb mapping 

analogy, family analogy, currency and capital-common-

countries classes.  In general, given a triplet of words A : 

B :: C, the goal of word analogy is to find the word D  for a 

given word C such that A : B and C : D share the same 

relation.   

Table 2: Performance of the various word vectors on the 

word analogy task. 

Models Embedding 

Dimension 

Word Analogy 

(Average 

Accuracy) 

FastText  

Grave et al. (2018) 

300D 11.02 

Word2Vec-CBOW 100D 11.02 

200D 16.04 

300D 20.6 

Word2Vec -SkipGram 100D 18.7 

200D 18.9 

300D 19.56 

FastText-CBOW 100D 18.5 

200D 22.05 

300D 24.08 

FastText-SkipGram 100D 16.9 

200D 17.45 

300D 16.07 

 

 

The values of word analogy column are average 

accuracies in percentage.  We only reported model trained 

with our proposed hyper-parameter settings. 

According to the results, all models outperformed the 

baseline Grave et al. (2018). The one with best accuracy is 

FastText model trained with 300D, which improved 

+13.06 from the baseline FastText model. In all 

experiments for both word2vec and FastText models, our 

CBOW model outperformed skipgram. 

4.9 Extrinsic Evaluation 

Apart from the analogy task, we have also conducted 

extrinsic evaluation using neural Amharic part-of-speech 

tagger. The task is selected based on availability of public 

dataset. The following sections briefs the model 

architectures of Amharic neural POS tagger. 

4.9.1 Amharic Neural Part of Speech Tagger 

We adopted a dataset from (Girma A. et al., 2006) as a 

training corpus. We grouped the dataset into 20, 10, and 70 

splits for testing, validation and training sets respectively. 

Since our aim is to evaluate the performance of our word 

vectors in Amharic part of speech tagger task, we have 

create simple two layer bidirectional LSTM based neural 

network architecture to encode sentence and predict tags. 

We trained the same architecture for all word vectors 

(excluding sentence piece trained model) and compared 

our word vectors with Amharic word vectors released by 

Grave et al. (2018). 

Table 3: Performance of Sub-word tokenized word2vec 

model in POS tagger task. 

Model Dimension POS Tagger 

(Test Accuracy) 

BPEembed (Kudo 

T. and Richardson J., 

2018) 

50D 0.902 

100D 0.925 

SentencePiece-

Word2Vec 

50D 0.947 

100D 0.951 

 

To evaluate sub-word embedding’s in POS tagging 

task, due to SentencePiece tokenizer we must take special 

care for the correct alignment of token to tag. We keep tags 

of original word to each tokenized sub-word units which 

can then be used to project labels to the tokenized 

representation. Table 3 above depicts our model 

performance on neural POS tagging task using sub-word 

tokenized word2vec model. From over all, extrinsic 

evaluation, our sub-word embedding outperformed the 

baseline BPEembed with +3 in 100D and +4 in 50D. This 

is because our tokenizer plus word embedding models are 

trained in wide data coverage. 
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Table 4: Performance of the various word vectors on 

extrinsic POS tagger task 

Models  Dimension POS 

Tagger 

FastText Grave et al. 

(2018) 

300D 0.91 

W2V-CBOW 100D 0.92 

200D 0.944 

300D 0.93 

W2V-SkipGram 100D 0.925 

200D 0.931 

300D 0.90 

FastText-CBOW 100D 0.944 

200D 0.952 

300D 0.935 

FastText-SkipGram 100D 0.89 

200D 0.90 

300D 0.93 

 

The values of word analogy and word detection column 

are average accuracies in percentage.  We only reported 

model trained with our proposed hyper-parameter settings. 

The experiment on word level word2vec and FastText 

models also performed promising accuracy for 

morphologically rich Amharic language part of speech 

tagging. Similar to word analogy, our model also 

performed interesting improvement in test set when 

compared to base line FastText model (Grave et al., 2018). 

 

4.10 Visualizing Word Embedding 

To evaluate how our word vectors cluster syntactically 

and semantically related words, we visualized few 

neighbor word using Tensorboard TSNE4. We created 

python function called plot_vector that read our embedding 

vector binary file and extract vocabulary words from 

embedding file. Then we created non-trainable TensorFlow 

model and defined TensorFlow 2D tensor variable that 

holds our embedding. Finally, we associated metadata with 

our word embedding. Then we run Tensorboard by 

referring the log directory of metadata. Because of limited 

computational resource, we visualized only few word 

space.  

                                                           
4 wwww.tensorflow.org/tensorboard 

The visualization depicted interesting feature of our 

word to cluster words to their semantic space. As depicted 

in Figure 1, Amharic words such ወር(wärə), ቀን(qänə), 

ሰዓት(säʾatə) to one category using as time measurement as 

semantic class. We can also see that ሜትር(metərə) and 

ኪሎ(kilo) are clustered together. Number categories such 

as ሚሊየን(miliyänə), ቢሊዮን(biliyonə), 

 

Fig.1: Visualizing word2vec 200D vectors to see how 

the model cluster semantically related words 

 

Fig.2: Visualizing FastText 200D vectors  
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ትሪሊዮን(təriliyonə), and ሺህ(šihə) to one cluster; 

percentage indicators such as በአማካይ(bäʾämakayə) and 

በመቶ(bämäto); financial terms such as ክፍያ(kəfəya) 

ወጪ(wäč'i) and ገቢ(gäbi) at one category. 

This show the performance of our word vectors in 

capturing semantic relationship between words. As 

depicted in Figure 2 below, our FastText model clustered 

words with different morphological variations and having 

the same meaning in to similar vector space. 

The model also clustered synonym words to one 

category. For example, words like ድርጅት(dərəǧətə) and 

ተቋም(täqwamə), ከተማ(kätäma), ስፍራ(səfəra), 

መንደር(mänədärə), and አካባቢ(äkababi), 

መመሪያ(mämäriya), ህግ(həgə), and ሰነድ(sänädə) are 

grouped in similar space with the same derivational forms 

in a way that shows the quality of our word vectors to 

predict word analogy. In addition, visualization in Figure 3 

also depicts our word2vec model can also capture word 

morphology. 

 

Fig.3: Visualizing word2vec 200D vectors for morphology 

 

V. CONCLUSION 

In this work, we contribute word vectors trained on 

varieties of online and offline sources, as well new 

analogy datasets to evaluate these models. We study the 

effect of various hyper parameters on the performance of 

the trained models, showing how to obtain high quality 

word vectors. In addition, we also created sub-word 

embedding using word2vec model. Here we get advantage 

of word2vec semantic similarity detection ability and 

capture syntactic features with sub-word embedding.  

We also released Amharic SentencePiece tokenizer 

model that can be used for subsequent NLP tasks. Our 

evaluation shows that our models can generate quality 

vectors for Amharic words and proved the vectors are 

trained over large and curated data with wide coverage 

from online and offline sources. As future work, we would 

like to explore more techniques to improve the quality of 

models for Amharic and other Ethiopic languages 

including creation of contextualized transformer models. 
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