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Abstract— Continuity equation for wave modeling is still being developed. There are quite a lot of versions of this 

equation. This research formulates continuity equation in a simple form to simplify its numerical and analytical 

solution.  

The formulation of the continuity equation is done by performing mass conservation law in a water column with free 

surface and by performing weighted total acceleration. Then, the continuity equation is performed along with the 

surface momentum equation and completed numerically to modeling one-dimensional wave dynamism. The equation 

is capable of modeling shoalingand breaking. 

Keywords— Continuity Equation, Weighted total acceleration equation. 

 

I. INTRODUCTION 

Time series water wave equation is generally called 

Boussinesq type equation.There are quite a lot of versions of 

Boussinesq equation, either its continuity equation or water 

surface equation as well as its momentum equation. Those 

equations generally consist of the second or higher 

differential elements which quite complicate the solution 

both analytically and numerically. Some researcher who have 

developed Boussinesq equation are among othersBoussinesq, 

J. (1871), Dingeman, M.W. (1997), Ham;L., Madsen, P.A., 

Peregrin, D.H. (1993), Johnson, R.S. (1997), Kirby, J.T. 

(2003), Peregrine, D.H. (1967), Peregrine, D.H. (1972) and  

many more.   

Governing equations in this research are water surface 

equation and surface momentum equation, both of which use 

particle velocity at the surface as the variable and both are in 

the form of  time and space differential equation in simple 

form. Water surface equation is formulated based on mass 

conservation law and by performing weighted total 

acceleration at the kinematic free surface boundary 

condition. The momentum equation is obtained by 

performing weighted total acceleration at the Euler 

momentum equation. The integration with water depth from 

this momentum equation produces surface momentum 

equation with particle velocity variable at the surface.  

Both governing equations are done using numerical method 

where spatial differential is done using finite difference 

method, whereas time differential is done using corrector 

predictor method.  

 

II. TOTAL DERIVATIVE EQUATION 

Hutahaean (2019a) developed weighted  total acceleration 

equation at water particle in horizontal direction, i.e., 
𝐷𝑢

𝑑𝑡
= 𝛾

Ƌ𝑢

Ƌ𝑡
+ 𝑢

Ƌ𝑢

Ƌ𝑥
+ 𝑤

Ƌ𝑢

Ƌ𝑧
  .........(1) 

𝑢is particle velocity in horizontal-𝑥direction and𝑤is particle 

velocity in vertical-𝑧 direction. Weighted total acceleration, 

was actually formulated for the function 𝑓 = 𝑓(𝑥, 𝑡). 

However, in this research it is performed at 𝑓 = 𝑓(𝑥, 𝑧, 𝑡), 

because the wave being discussed is a wave moving to 

horizontal-𝑥direction and vertical 𝑧 dimension is eliminated 

with the integration process, so the equation becomes a 

function of 𝑓 = 𝑓(𝑥, 𝑡).  

 

The changes in total water surface elevation is  
𝐷𝜂

𝑑𝑡
= 𝛾

Ƌ𝜂

Ƌ𝑡
+ 𝑢𝜂

Ƌ𝜂

Ƌ𝑥
  .......(2)  

𝜂 = 𝜂(𝑥, 𝑡)is water surface elevation against still water level 

(Fig. 1). In (1) and (2) there is time coefficient or time scale 

at time differential i.e. 𝛾with a value of 2.87-3.14 in 

Hutahaean (2019a,b). The value of γ is very much 
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determined by basic equation in which the total acceleration 

was performed. In this research the correspond 𝛾value of 

2.00 is found.  

 

Based on (2), then kinematic free surface boundary condition 

that was formulated from total derivative equation of the 

changes of a surface (Dean (1991)), becomes  

𝑤𝜂 = 𝛾
Ƌ𝜂

Ƌ𝑡
+ 𝑢𝜂

Ƌ𝜂

Ƌ𝑥
    ........(3) 

𝑢𝜂is the velocity of horizontal-𝑥direction at the surface. 

 

III. CONTINUITY EQUATION 

3.1. The formulation of continuity equation  

Continuity equation or water wave surface equation will be 

formulated in a water column (Fig.1.) with free water 

surface, where as a result of an input-output in a water 

column in a very small time interval 𝛾𝛿𝑡, a change in water 

surface elevation of 𝛿𝜂 occurs so there is also a change in the 

per width unit volume of 𝛿𝜂𝛿𝑥. For a very small 

𝛿𝑥where𝛿𝑥 = 𝑑𝑥 

𝛿𝑚 =
𝜌

2
𝛿𝜂𝑑𝑥        .............(4) 

The change in water mass from input-output process (Fig. 1.) 

is, 

𝛿𝑚 = 𝜌(𝑢 − (𝑢 + 𝛿𝑢))𝛿𝑧𝛿𝑡 

+(𝑤 − (𝑤 + 𝛿𝑤))𝛿𝑥𝛾𝛿𝑡 

𝛿𝑚 = −𝜌 (
𝛿𝑢

𝛿𝑥
+

𝛿𝑤

𝛿𝑧
) 𝛿𝑥𝛿𝑧𝛾𝛿𝑡 

 

Total change in water mass in the water column at very small 

𝛿𝑥and𝛿𝑧, 

𝛿𝑚 = −𝜌 ∫ (
Ƌ𝑢

Ƌ𝑥
+

Ƌ𝑤

Ƌ𝑧
) 𝑑𝑧

𝜂

−ℎ
𝑑𝑥𝛾𝛿𝑡   ........(5) 

ℎis water depth against still water level, 𝜂 = 𝜂(𝑥, 𝑡)is the 

water surface elevation also against water level..For 

incompressible fluid, 𝛿𝑚in (4) is the same as𝛿𝑚in (5), 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1: Water column to formulate continuity equation. 

𝜌

2
𝛿𝜂𝑑𝑥 = −𝜌 ∫ (

Ƌ𝑢

Ƌ𝑥
+

Ƌ𝑤

Ƌ𝑧
) 𝑑𝑧

𝜂

−ℎ

𝑑𝑥𝛾𝛿𝑡 

Both sides are divided by 𝜌,  𝑑𝑥and𝛾𝛿𝑡, 

𝛿𝜂

2𝛾𝛿𝑡
𝑑𝑥 = −𝜌 ∫ (

Ƌ𝑢

Ƌ𝑥
+

Ƌ𝑤

Ƌ𝑧
) 𝑑𝑧

𝜂

−ℎ

 

 

For a very small𝛿𝑡, 

𝐷𝜂

2𝛾𝑑𝑡
= − ∫ (

Ƌ𝑢

Ƌ𝑥
+

Ƌ𝑤

Ƌ𝑧
) 𝑑𝑧

𝜂

−ℎ

 

Substitute (2) to the left side of the equation  

1

2

Ƌ𝜂

Ƌ𝑡
+

𝑢𝜂

2𝛾

Ƌ𝜂

Ƌ𝑥
= − ∫ (

Ƌ𝑢

Ƌ𝑥
+

Ƌ𝑤

Ƌ𝑧
) 𝑑𝑧

𝜂

−ℎ

 

The integration of the second term of the right side is done 

and substituted kinematic free surface bondary condition and 

kinematic bottom boundary condition, 

(𝛾 +
1

2
)

Ƌ𝜂

Ƌ𝑡
= − ∫

Ƌ𝑢

Ƌ𝑥
𝑑𝑧

𝜂

−ℎ

− (1 +
1

2𝛾
) 𝑢𝜂

Ƌ𝜂

Ƌ𝑥
 

−𝑢−ℎ
Ƌℎ

Ƌ𝑥
........(6) 

The integration of the first term right side is performed with 

Leibniz integration (Protter (1985)), 

 

∫
Ƌ𝑓

Ƌ𝑥
𝑑𝑧 =

Ƌ

Ƌ𝑥

𝛽

𝛼

∫ 𝑓 𝑑𝑧
𝛽

𝛼

− 𝑓𝛽

Ƌ𝛽

Ƌ𝑥
+ 𝑓𝛼

Ƌ𝛼

Ƌ𝑥
 

Obtain, 

∫
Ƌ𝑢

Ƌ𝑥
𝑑𝑧 =

Ƌ

Ƌ𝑥

𝜂

−ℎ

∫ 𝑢 𝑑𝑧
𝜂

−ℎ

− 𝑢𝜂

Ƌ𝜂

Ƌ𝑥
− 𝑢−ℎ

Ƌℎ

Ƌ𝑥
 

(6),becomes 

(𝛾 +
1

2
)

Ƌ𝜂

Ƌ𝑡
= −

Ƌ

Ƌ𝑥
∫ 𝑢𝑑𝑧

𝜂

−ℎ
−

𝑢𝜂

2𝛾

Ƌ𝜂

Ƌ𝑥
             .......(7) 

Integration in the right side in (7) is done using velocity 

equation from Dean (1991) and the result of integration is 

expressed as a function of surface horizontal velocity 𝑢𝜂 in 

order to correspond with momentum equation that produces 

surface velocity𝑢𝜂. Velocity potential equation as the result 

of Laplace equation solution (Dean (1991)) is 

𝛷(𝑥, 𝑧, 𝑡) = 𝐺𝑐𝑜𝑠𝑘𝑥𝑐𝑜𝑠ℎ𝑘(ℎ + 𝑧)𝑠𝑖𝑛𝜎𝑡      ....(8) 

𝐺wave constant, 𝑘 wave number and𝜎 angular frequency. 

Particle velocity in horizontal-𝑥 direction is 

𝑢(𝑥, 𝑧, 𝑡) = −
Ƌ𝛷

Ƌ𝑥
 

= 𝐺𝑘𝑠𝑖𝑛𝑘𝑥𝑐𝑜𝑠ℎ𝑘(ℎ + 𝑧)𝑠𝑖𝑛𝜎𝑡.......(9) 

Using (9), 𝑢 =
𝑐𝑜𝑠ℎ𝑘(ℎ+𝑧)

𝑐𝑜𝑠ℎ𝑘(ℎ+𝜂)
𝑢𝜂 , then integration in (7) 

becomes, 

Ƌ

Ƌ𝑥
∫ 𝑢𝑑𝑧

𝜂

−ℎ

=
Ƌ

Ƌ𝑥
∫

𝑐𝑜𝑠ℎ𝑘(ℎ + 𝑧)

𝑐𝑜𝑠ℎ𝑘(ℎ + 𝜂)
𝑢𝜂𝑑𝑧

𝜂

−ℎ

 

Completing the integration will obtain 

η(𝑥. 𝑡) 

Still water level 

Sea bed 
δx 

δz 
u+δu u 

w+δw 

w 

x 

z 
δη 
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Ƌ

Ƌ𝑥
∫ 𝑢𝑑𝑧

𝜂

−ℎ

=
Ƌ

Ƌ𝑥
(

𝑢𝜂𝑡𝑎𝑛ℎ𝑘(ℎ + 𝜂)

𝑘
) 

From the wave-number conservation equation (Hutahaean 

(2019a)), 𝑡𝑎𝑛ℎ𝑘(ℎ + 𝜂) = 𝑡𝑎𝑛ℎ𝑘0(ℎ0 + 𝜂0) = 1, where𝑘0is 

wave number in deep water, ℎ0is  deep water depth and𝜂0is 

water surface elevation in deep water, can have a value of 
𝐴0

2
or others, 𝐴0is wave amplitude in deep water. Therefore, 

the result of the integration becomes, 

Ƌ

Ƌ𝑥
∫ 𝑢𝑑𝑧

𝜂

−ℎ

=
Ƌ

Ƌ𝑥
(

𝑢𝜂

𝑘
) 

Substitute the result of integration to (7), 

(𝛾 +
1

2
)

Ƌ𝜂

Ƌ𝑡
= −

Ƌ

Ƌ𝑥
(

𝑢𝜂

𝑘
) −

𝑢𝜂

2𝛾

Ƌ𝜂

Ƌ𝑥
  ......(10) 

Equation (10) is a continuity equation that will be used in this 

researchor water wave surface equation in the form of 

differential equation. In (10), there is wave number 

𝑘parameter that should be known, and some other 

characteristics that should also be known, among other is 

deep water depth𝑑0, i.e. maximumwater depth if the equation 

was done in water depth 𝑑which is bigger than 𝑑0, so the 

calculation is done using 𝑑0.Next is wave amplitude 

maximum𝐴𝑚𝑎𝑥, i.e. maximum  amplitude in a wave period 

that can be inputted to the model.  

 

 

 

3.2.  The calculation of𝐴𝑚𝑎𝑥and𝑑0. 

It’s been known that there is a relation between water depth 

𝑑and wave number 𝑘, then the calculation will be easier if in 

(10) wave number 𝑘is substituted with water depth 𝑑. 

Whereas the equation for wave number in deep water 𝑘0can 

be calculated using the following equation, the formulation 

of an equation outside the scope of this research, will be 

written in the next paper. 

𝛾 (𝛾 +
1

2
) 𝜎2 = 𝑔𝑘0(1 − 𝑘0𝐴0)  ........(11) 

𝐴0is wave amplitude which is an input, 𝑘0is deep water wave 

number, σ is angular frequency, 𝜎 =
2𝜋

𝑇
, 𝑇is wave period. 

𝑘0in(11) can be calculated using simple calculation, i.e. 

finding the root of the quadratic equation. (11) can be 

completed if determinant 𝐷 = 𝑔2 − 4𝑔𝐴𝛾 (𝛾 +
1

2
) 𝜎2is 

bigger than or the same as zero.In case of 𝐷 = 0,obtains 

𝐴0,𝑚𝑎𝑥 =
𝑔

4𝛾(𝛾+
1

2
)𝜎2

     ........(12) 

In deep water 𝑡𝑎𝑛ℎ𝑘0 (𝑑0 +
𝐴0

2
) = 1 applies. Assuming that 

wave amplitude is much smaller than deep water depth, or 

𝐴0

2𝑑0
≪ 1, 𝐴0 deep water wave  amplitude and𝑑0  deep water 

depth, then the following relation applies  

𝑡𝑎𝑛ℎ𝑘0 (𝑑0 +
𝐴0

2
) = 𝑡𝑎𝑛ℎ𝑘0𝑑0 (1 +

𝐴0

2𝑑0

) 

= 𝑡𝑎𝑛ℎ𝑘0𝑑0 = 1 

𝑘0is wave number in deep water depth 𝑑0. As deep water the 

following criteria is used  

𝑘0𝑑0 = 1.7𝜋         .......(13) 

where𝑡𝑎𝑛ℎ1.7𝜋 = 0.999954 ≈ 1, the uses of this 

1.7 𝜋value is also based on the review of the produced 

breaker depth.  𝑘0was obtained from (11), therefore𝑑0can be 

calculated using (13).  

 

Bases on wave number conservation equation (Hutahaean 

(2019a)), the relation between wave number 𝑘𝑑in a depth 𝑑,  

with wave number in deep water is, 

𝑘𝑑(ℎ + 𝜂) = 𝑘0(𝑑0 + 𝜂0). Assuming that 
𝜂0

𝑑0
≪ 1, then 

𝑘𝑑(ℎ + 𝜂) = 𝑘0𝑑0 = 1.7𝜋 .Or,  

𝑘𝑑 =
1.7𝜋

(ℎ+𝜂)
 .......(14) 

 

3.3.  The Final Water Wave Surface Equation  

By substituting (14) to (10), the final water wave equation 

was obtained with water depth 𝑑as its parameter, i.e 

(𝛾 +
1

2
)

Ƌ𝜂

Ƌ𝑡
= −

Ƌ

Ƌ𝑥
(

𝑢𝜂(𝑑+𝜂)

1.7𝜋
) −

𝑢𝜂

2𝛾

Ƌ𝜂

Ƌ𝑥
   .......(15) 

Therefore. There is no need to calculate wave number 𝑘.  

An example of the calculation of deep water wavelength  

𝐿0 =
2𝜋

𝑘0
 , deep water depth 𝑑0and𝐴0,𝑚𝑎𝑥where 𝛾 = 2.000is 

used is presented in Table (1) below. 

 

Table.1: The value of 𝐴0,𝑚𝑎𝑥, 𝑑0and𝐿0 

𝑇 

(sec.) 

𝐴0,𝑚𝑎𝑥 

(m) 

𝑑0 

(m) 

𝐿0 

(m) 

𝑑0

𝐿0

 

6 0,447 4,929 5,798 0,85 

7 0,608 6,708 7,892 0,85 

8 0,794 8,762 10,308 0,85 

9 1,005 11,09 13,047 0,85 

10 1,241 13,691 16,107 0,85 

11 1,502 16,566 19,489 0,85 

12 1,787 19,715 23,194 0,85 

13 2,098 23,137 27,221 0,85 

14 2,433 26,834 31,569 0,85 

15 2,793 30,804 36,24 0,85 
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IV. MOMENTUM EQUATION  

Weighted total acceleration equation is done in Euler 

momentum equation in horizontal-𝑥direction and vertical-

𝑧direction consecutively (Anderson (1995)), 

𝛾
Ƌ𝑢

Ƌ𝑡
+ 𝑢

Ƌ𝑢

Ƌ𝑥
+ 𝑤

Ƌ𝑢

Ƌ𝑧
= −

1

𝜌

Ƌ𝑝

Ƌ𝑥
                    .......(17) 

𝛾
Ƌ𝑤

Ƌ𝑡
+ 𝑢

Ƌ𝑤

Ƌ𝑥
+ 𝑤

Ƌ𝑤

Ƌ𝑧
= −

1

𝜌

Ƌ𝑝

Ƌ𝑧
− 𝑔           .......(18) 

(18) is written as  an equation for 𝑝andthe nature of irrotional 

flow was performed i.e.
Ƌ𝑤

Ƌ𝑥
=

Ƌ𝑢

Ƌ𝑧
,  the equation is integrated to 

vertical-𝑧 axis, surface dynamic boundarycondition is 

performed, i.e. 𝑝𝜂 = 0, and differentiated against horizontal-

𝑥 axis.  

1

𝜌

Ƌ𝑝

Ƌ𝑥
= 𝛾

Ƌ

Ƌ𝑥
∫

Ƌ𝑤

Ƌ𝑡
𝑑𝑧

𝜂

𝑧

+
1

2

Ƌ

Ƌ𝑥
(𝑢𝜂

2 + 𝑤𝜂
2) 

−
1

2

Ƌ

Ƌ𝑥
(𝑢2 + 𝑤2) + 𝑔

Ƌ𝜂

Ƌ𝑥
 .....  (19) 

In (17) the nature of irrotional flow was performed, i.e. 
Ƌ𝑢

Ƌ𝑧
=

Ƌ𝑤

Ƌ𝑥
, and substitute (19) to the right side of the equation,  

𝛾
Ƌ𝑢

Ƌ𝑡
= −𝛾

Ƌ

Ƌ𝑥
∫

Ƌ𝑤

Ƌ𝑡
𝑑𝑧

𝜂

𝑧

 

−
1

2

Ƌ

Ƌ𝑥
(𝑢𝜂

2 + 𝑤𝜂
2) − 𝑔

Ƌ𝜂

Ƌ𝑥
 .....(20) 

The solution of 
Ƌ

Ƌ𝑥
∫

Ƌ𝑤

Ƌ𝑡
𝑑𝑧

𝜂

𝑧
is done using velocity potential 

(8), where the particle velocity in horizontal direction is in 

equation (9).  Particle velocity in vertical-𝑧, is 

𝑤 = −
Ƌ𝛷

Ƌ𝑧
= −𝐺𝑘𝑠𝑖𝑛ℎ𝑘(ℎ + 𝑧)𝑐𝑜𝑠𝑘𝑥𝑠𝑖𝑛𝜎𝑡 

  ....(21) 
Ƌ𝑤

Ƌ𝑡
= −𝐺𝑘𝑠𝑖𝑛ℎ𝑘(ℎ + 𝑧)𝜎𝑐𝑜𝑠𝑘𝑥𝑐𝑜𝑠𝜎𝑡   ........(22) 

 (22) is integrated against time 𝑡 

∫
Ƌ𝑤

Ƌ𝑡
𝑑𝑧

𝜂

𝑧

= 

−𝐺(𝑐𝑜𝑠ℎ𝑘(ℎ + 𝜂) − 𝑐𝑜𝑠ℎ𝑘(ℎ + 𝑧)) 

𝜎𝑐𝑜𝑠𝑘𝑥𝑐𝑜𝑠𝜎𝑡 

Differentiated against horizontal-𝑥 axis 

Ƌ

Ƌ𝑥
∫

Ƌ𝑤

Ƌ𝑡
𝑑𝑧

𝜂

𝑧

= 

𝐺𝑘(𝑐𝑜𝑠ℎ𝑘(ℎ + 𝜂) − 𝑐𝑜𝑠ℎ𝑘(ℎ + 𝑧)) 

𝜎𝑠𝑖𝑛𝑘𝑥𝑐𝑜𝑠𝜎𝑡 

Equation (9) is differentiated against time 𝑡,  
Ƌ𝑢

Ƌ𝑡
=

𝐺𝑘𝑠𝑖𝑛𝑘𝑥𝑐𝑜𝑠ℎ𝑘(ℎ + 𝑧)𝜎𝑐𝑜𝑠𝜎𝑡, which shows that this form is 

in 
Ƌ

Ƌ𝑥
∫

Ƌ𝑤

Ƌ𝑡
𝑑𝑧

𝜂

𝑧
, so the following relation is obtained  

Ƌ

Ƌ𝑥
∫

Ƌ𝑤

Ƌ𝑡
𝑑𝑧

𝜂

𝑧

=
Ƌ𝑢𝜂

Ƌ𝑡
−

Ƌ𝑢

Ƌ𝑡
 

Substitute this equation to (20),  

Ƌ𝑢𝜂

Ƌ𝑡
= − (

1

2

Ƌ

Ƌ𝑥
(𝑢𝜂

2 + 𝑤𝜂
2) + 𝑔

Ƌ𝜂

Ƌ𝑥
)

1

𝛾
   ..............(23) 

(23) is surface momentum equation that produces surface 

velocity𝑢𝜂. By completing 
Ƌ

Ƌ𝑥
∫

Ƌ𝑤

Ƌ𝑡
𝑑𝑧

𝜂

𝑧
with the method 

above, then in the momentum equation there is an influence 

of continuity equation or momentum equation that was 

produced and controlled by continuity equation. Another 

control by continuity equation on momentum equation is on 

variable𝑤𝜂 , i.e.𝑤𝜂 = 𝛾
Ƌ𝜂

Ƌ𝑡
+ 𝑢𝜂

Ƌ𝜂

Ƌ𝑥
where

Ƌ𝜂

Ƌ𝑡
is obtained from 

continuity equation. Therefore, momentum equation (20) is 

controlled by water surface equation.  

 

V. RESULT OF THE MODEL  

5.1. Numerical Solution  

In this research, water surface equation and momentum 

equation are done with finite difference method for spatial 

differential, whereas time differential is done using predictor-

corrector method based on Newton-Cote numerical 

integration (Abramowitz (1972)). Whereas the predictor-

corrector method is as follows. As an example water surface 

equation (15) will be done. The water surface equation can 

be written in the form of,  

Ƌ𝜂

Ƌ𝑡
= 𝐹(𝑡) 

𝐹(𝑡) = −
1

(𝛾+
1

2
)

(
Ƌ

Ƌ𝑥
(

𝑢𝜂(𝑑+𝜂)

1.7𝜋
) +

𝑢𝜂

2𝛾

Ƌ𝜂

Ƌ𝑥
)       .....(24) 

The equation is integrated against time from 𝑡 = 𝑡 − 𝛿𝑡until 

𝑡 = 𝑡 + 𝛿𝑡, where the integration of the right side of the 

equation is done with Newton-Cote numerical integration 

with 3 (three) integration points, 

 

∫ Ƌ𝜂
𝑡+𝛿𝑡

𝑡−𝛿𝑡

= ∫ 𝐹(𝑡)𝑑𝑡
𝑡+𝛿𝑡

𝑡−𝛿𝑡

 

𝜂𝑡+𝛿𝑡 = 𝜂𝑡−𝛿𝑡 + 𝛿𝑡 (
1

3
𝐹𝑡−𝛿𝑡 +

4

3
𝐹𝑡 +

1

3
𝐹𝑡+𝛿𝑡) 

....(25) 

𝐹𝑡+𝛿𝑡is unknown number, therefore it needs to be predicted 

using Taylor series and finite difference method, where the 

step is called predictor step, i.e.  

 

𝐹𝑡+𝛿𝑡 = 𝐹𝑡 + 𝛿𝑡 (
𝐹𝑡−𝐹𝑡−𝛿𝑡

𝛿𝑡
)  ....(26) 

Substitute (26) to (25), the value of 𝜂𝑡+𝛿𝑡prediction can be 

calculated. With similar way, momentum equation is done, 

and 𝑢𝜂
𝑡+𝛿𝑡prediction is obtained. With those prediction 

values,𝐹𝑡+𝛿𝑡can be calculated with (24), and (25) is done. 

This step is called corrector step.  This corrector step is also 
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done on momentum equation interchangeably with the water 

surface equation, and repeated until a convergence is reached 

where  |𝜂𝑛𝑒𝑤
𝑡+𝛿𝑡 − 𝜂𝑜𝑙𝑑

𝑡+𝛿𝑡| ≤ ɛand|𝑢𝜂,𝑛𝑒𝑤
𝑡+𝛿𝑡 − 𝑢𝜂,𝑜𝑙𝑑

𝑡+𝛿𝑡 | ≤ ɛwhereɛis 

a very small positive number as an iteration accuracy criteria. 

Generally, a convergence is reached with 5 iterations. 

 

5.2. The Result of Model Execution  

a. In constant depth of 11.0  m 

In this section the model is done in a channel with a constant 

water depth of 𝑑 = 11.00 m, with wave period of 8 sec., 

wave amplitude 𝐴0 = 0.794 m, where actually that does not 

mean that wave height is twice that of wave amplitude, 

Hutahaean(2019 c).Deep water depth for this wave is 𝑑0 =

8.762m. In the case that 𝑑is bigger than𝑑0then the 

calculation of(𝑑 + 𝜂)in (15),(𝑑0 + 𝜂) is used. The model is 

done using two boundary conditions, i.e. closed-end 

boundary condition where horizontal velocity𝑢 = 0, whereas 

in the opened-endthe model was given an input, i.e. 

sinusoidal wave𝜂0 = 𝐴0𝑠𝑖𝑛𝜎𝑡. The input is done only for 1 

time wave period.  

The result of the execution for 8, 24, and 40 sec. is presented 

in (Fig.2.). In the execution for 8 sec., the wave profile is still 

in the form of sinusoidal, but the wave trough elevation is 

smaller than the elevation. In the execution for 24 sec, the 

formed wave trough is getting smaller and farther away, 

similarly with execution for 40 sec, the wave trough is 

getting smaller and farther away where water ripple is 

formed and the form of the main wave is a perfect cnoidal 

wave or more accurately it is called solitary wave.  

As a conclusion of the model execution in this constant water 

depth is that in the deep water, the equation used produced 

perfect cnoidaltype wave or also can be called as solitary 

wavetype, even though the input of sinusoidal wave, the 

wave trough part disappears.  

 
Fig.2.Wave profile after the execution for 8,24 and 40 sec. 

b. In a changing depth  

With the phenomenon of the evolution of sinusoidal wave 

into cnoidal wave, in the model execution at the an uneven 

bottom, before the wave enters the water with slopping 

bottom, the wave is given evolution zone, i.e. in front of the 

water in the form of water with constant depth. 

 

 

 

 

 

 

Fig.3. Sea bed for model execution at uneven bottom. 

 

The calculation is done with evolution zone length of 100 m 

(Fig.3) with constant water depth of𝑑 = 11.0 𝑚, then the 

water depth changes until the depth of 1.0 m, with a distance 

of 200 m, with tangent of bottom slope i.e. 
𝑑ℎ

𝑑𝑥
=

10

200
= 0.05. 

The wave used here is wave with wave period  8 sec., wave 

amplitude 0.794 m, with the result of calculation shown in 

Fig.4. and Fig.5.Coming out of the evolution zone, shoaling 

occurs followed by breaking, with a breaker height 𝐻𝑏 =

1.546 m, at breaker depth ℎ𝑏 = 1.969 𝑚, where 
𝐻𝑏

ℎ𝑏
= 0.785. 

This condition is obtained by multiplying the second term of 

the water wave surface equation (15) with a factor of 2.5, so 

that (15) becomes, 

(𝛾 +
1

2
)

Ƌ𝜂

Ƌ𝑡
= −

Ƌ

Ƌ𝑥
(

𝑢𝜂(𝑑+𝜂)

1.7𝜋
) −

2.5𝑢𝜂

2𝛾

Ƌ𝜂

Ƌ𝑥
. 

This coefficient 2.5 is obtained by experimentation in order 

to obtain 
𝐻𝑏

ℎ𝑏
approximates 0.80. Coefficient 2.52 can also be 

used where 
𝐻𝑏

ℎ𝑏
= 0.81was obtained but the equation becomes 

unstable after the breaking. Therefore, further research is still 

needed on water wave surface equation as well as momentum 

equation that was used. 

 
Fig 4. Wave profile (𝜂) and wave crest elevation(𝜂𝑚𝑎𝑥) 
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Fig 5. Wave profile (𝜂) after breaking 

 

VI. CONCLUSION 

As has been shown that model can produce two main 

phenomena that occur at the water wave on its way to 

shallow water, i.e. shoaling and breaking. At the deep water, 

at a constant depth the profile of perfect cnoidal wave is 

formed which is also called solitary wave. Behind the main 

wave, wave ripple is formed which is also known as undular 

wave. Therefore, it can be said that the equation that was 

produced in this research can model several phenomena at 

water wave found in the nature.  

Further research that needs to be done is to study the 

phenomenon at the equation by producing analytical 

solution. Considering the simple form of the equation, the 

analytical solution of the water wave surface equation can be 

obtained easily, i.e. using velocity potential equation from 

Laplace solution equation. By studying analytical solution, it 

is expected that an explanation will be obtained on the 

appearance of coefficient 2.5 at the second term of the water 

wave surface equation. 
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