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Abstract— In this research, analytical method of water 

wave dynamics was developed using wave constant G at 

velocity potential of Laplace equation solution result, 

where at small amplitude theory the wave constant was 

eliminated with wave amplitude. The assumption of 

sinusoidal wave is maintained. 

The calculation methods that were formulated include 

wave number calculation method and shoaling and 

breaking modeling. Using the wave constant, then 

equilibrium equation will be met more accurately.  

Keywords— Wave constant 𝑮,  sinusoidal water wave 

surface, wavelength,  shoaling-breaking. 

 

I. INTRODUCTION 

Small amplitude wave theory (Dean (1991)) was 

formulated with an assumption that wave amplitude is 

very small so that the elevation of water wave surface at 

the execution of Bernoulli equations at the surface is 

considered to coincide with the still water level elevation 

(zero elevation). Using this method, relation equation 

between wave constant 𝐺 and wave amplitude 𝐴 was 

formulated. Afterwards, wave constant 𝐺 at velocity 

potential equation was eliminated with wave amplitude A. 

Bearing in mind that there is no wave amplitude at the 

velocity potential equation, then the accuracy of wave 

analysis by eliminating wave constant 𝐺 requires accurate 

relation equation. Particle velocity equation which is a 

differential of velocity potential equation is a function of 

wave constant 𝐺 where the particle velocity is used in 

various calculations and at equilibrium equation. Hence, 

eliminating wave constant 𝐺 with wave amplitude 

requires an accurate relation.  

In this research, relation between wave amplitude 𝐴 and 

wave constant 𝐺 was formulated without working on the 

assumption of small and long wave and without 

eliminating wave constant G. As a result, an equation 

where wave constant G together with wave amplitude A 

as its variables was formulated. The relation was 

formulated using KFSBC together with momentum 

equation.  

To simplify the calculation, the equation was developed 

by maintaining an assumption that the wave is sinusoidal, 

where wave height H is twice wave amplitude or H = 2A. 

The existing understanding is that sinusoidal wave is only 

for small amplitude wave. This research experienced no 

obstacle as a result of the working on sinusoidal wave 

assumption and quite accurate calculation result was 

obtained.  

 

II. VELOCITY POTENTIAL FOR SLOPING 

BOTTOM 

In this research, velocity potential at sloping bottom from 

Hutahaean (2008) was used with initial form as follows  

𝛷 = 𝐺𝑒𝑘ℎ 𝛽(𝑧)𝑐𝑜𝑠𝑘𝑥𝑠𝑖𝑛𝜎𝑡  

𝐺 is wave constant, 𝑘 is wave number, 𝜎 is angular 

frequency, 𝜎 =
2𝜋

𝑇
 , 𝑇 is wave period, 𝑧 is elevation at 

vertical axis with 𝑧 = 0 at still water level surface. In this 

research, a new constant 𝐺 = 𝐺𝑒𝑘ℎ  was formed and 

bearing in mind the separation between 𝐺 and 𝑒𝑘ℎ  did not 

provide any benefit at all; therefore, to make it more 

concise,incorporation was done, then the potential 

velocity equation becomes: 

𝛷 = 𝐺𝛽(𝑧)𝑐𝑜𝑠𝑘𝑥𝑠𝑖𝑛𝜎𝑡    ..........(1) 

𝛽(𝑧) = 𝛼𝑒𝑘(ℎ+𝑧)
+ 𝑒 −𝑘(ℎ+𝑧)

 ..........(2)  

𝛽1
(𝑧) = 𝛼𝑒𝑘 (ℎ+𝑧)

− 𝑒−𝑘(ℎ+𝑧)
 ..........(3) 

𝛼 =
1

2
(

1+
Ƌℎ

Ƌ𝑥

1−
Ƌℎ

Ƌ𝑥

+
1−

Ƌℎ

Ƌ𝑥

1+
Ƌℎ

Ƌ𝑥

)   ..........(4) 

Ƌℎ

Ƌ𝑥
 is bottom slope. At sloping bottom there will be 

Ƌ𝐺

Ƌ𝑥
 and 

Ƌ𝑘

Ƌ𝑥
. Related to the changes in the value of the wave 

constant, there are two conservation laws in the velocity 

potential equation, i.e. wave number conservation and 

energy conservation. 

a. Wave Number Conservation 

At the execution of Laplace equation with variable 

separation method, as it is with 𝑐𝑜𝑠ℎ𝑘 (ℎ + 𝑧) at velocity 

potential for horizontal bottom, it has been determined 

that 𝛽(𝑧) is just a function of 𝑧, hence: 
Ƌ𝛽(𝑧)

Ƌ𝑥
= 0    .......(5) 

Ƌ𝑘 (ℎ+𝑧)

Ƌ𝑥
= 0      .......(6) 

At𝑧 = 0, applies  
Ƌ𝑘ℎ

Ƌ𝑥
= 0   .........(7) 

or 
Ƌ𝑘

Ƌ𝑥
= −

𝑘

ℎ

Ƌℎ

Ƌ𝑥
       .........(8) 

For  𝑧 = 𝜂 where 𝜂 is the elevation of water wave surface 

against still water level, 
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Ƌ𝑘(ℎ + 𝜂)

Ƌ𝑥
= 0 

At the characteristic point where 𝑐𝑜𝑠𝑘𝑥 = 𝑠𝑖𝑛𝑘𝑥 =

𝑐𝑜𝑠𝜎𝑡 = 𝑠𝑖𝑛𝜎𝑡 , hence 𝜂 =
𝐴

2
 , where 𝐴 is wave 

amplitude. This will be explained in other part. Wave 

number conservation equation becomes 

Ƌ𝑘 (ℎ+
𝐴

2
)

Ƌ𝑥
= 0        ......(9) 

or 

(ℎ +
𝐴

2
)

Ƌ𝑘

Ƌ𝑥
+

𝑘

2

Ƌ𝐴

Ƌ𝑥
+ 𝑘

Ƌℎ

Ƌ𝑥
= 0 ......(10) 

Equation (10) can be called continuity equation or mass 

conservation equation at waves experiencing changes in 

water depth, wave number 𝑘 and wave amplitude 𝐴. This 

equation cannot stand by itself, it has to meet certain 

limitation conditions, in this  case Kinematic Free Surface 

Boundary Condition (KFSBC).  

 

b. Energy conservation  

Other characteristic contained in (1) is energy 

conservation that will be formulated as follows. 

The velocity of water particle in horizontal 𝑢 direction at 

the direction of axis-𝑥  is, 

𝑢 = −
Ƌ𝛷

Ƌ𝑥
= 𝐺𝑘𝛽(𝑧) 𝑠𝑖𝑛𝑘𝑥𝑠𝑖𝑛𝜎𝑡 −

Ƌ𝐺

Ƌ𝑥
𝛽(𝑧) 𝑐𝑜𝑠𝑘𝑥𝑠𝑖𝑛𝜎𝑡 .....(11) 

Differential of this particle velocity equation in horizontal 

direction against axis-𝑥 , where there are changes in 𝐺 and 

𝑘 is 

Ƌ𝑢

Ƌ𝑥
= 𝐺𝑘2𝛽(𝑧) 𝑐𝑜𝑠𝑘𝑥𝑠𝑖𝑛𝜎𝑡  

+
Ƌ𝐺𝑘

Ƌ𝑥
𝛽(𝑧)𝑠𝑖𝑛𝑘𝑥𝑠𝑖𝑛𝜎𝑡  

+
Ƌ𝐺

Ƌ𝑥
𝑘𝛽(𝑧)𝑠𝑖𝑛𝑘𝑥𝑠𝑖𝑛𝜎𝑡 −

Ƌ2𝐺

Ƌ𝑥2
𝛽(𝑧)𝑐𝑜𝑠𝑘𝑥𝑠𝑖𝑛𝜎𝑡  

Particle velocity in vertical direction is, 

𝑤 = −
Ƌ𝛷

Ƌ𝑧
= −𝐺𝑘𝛽1

(𝑧)𝑐𝑜𝑠𝑘𝑥𝑠𝑖𝑛𝜎𝑡  

.......(12) 

The differential of this equation against vertical-𝑧 axis is  

Ƌ𝑤

Ƌ𝑧
= −𝐺𝑘2𝛽(𝑧) 𝑐𝑜𝑠𝑘𝑥𝑠𝑖𝑛𝜎𝑡  

Mass conservation law or continuity equation is 
Ƌ𝑢

Ƌ𝑥
+

Ƌ𝑤

Ƌ𝑧
= 0. Substitute equations 

Ƌ𝑢

Ƌ𝑥
and 

Ƌ𝑤

Ƌ𝑧
 , and work on the 

characteristic point , i.e. a point where 𝑐𝑜𝑠𝑘𝑥 = 𝑠𝑖𝑛𝑘𝑥 =

𝑐𝑜𝑠𝜎𝑡 = 𝑠𝑖𝑛𝜎𝑡 , 

𝐺
Ƌ𝑘

Ƌ𝑥
+ 2

Ƌ𝐺

Ƌ𝑥
𝑘 −

Ƌ2 𝐺

Ƌ𝑥2 = 0   .........(13) 

The equation can be written as,  

Ƌ2 𝐺

Ƌ𝑥2 = 𝐺
Ƌ𝑘

Ƌ𝑥
+ 2

Ƌ𝐺

Ƌ𝑥
𝑘    ..........(14) 

Either (13) or (14) can be called mass conservation 

equation, but considering that at 𝐺 there is energy 

dimension, then it can be called energy conservation 

equation. At either long wave or small amplitude an 

assumption of 
Ƌ2𝐺

Ƌ𝑥2 = 0 can be done, so the following 

relation was obtained,  

Ƌ𝐺

Ƌ𝑥
= −

Ƌ𝑘
Ƌ𝑥

2𝑘
𝐺     .......(15) 

or 
Ƌ𝐺

Ƌ𝑥
= −µ𝐺𝑘    .......(16) 

µ =
Ƌ𝑘
Ƌ𝑥

2𝑘2
  ........(17) 

Ƌ𝑘

Ƌ𝑥
 at (15), (16) and (17) can be approached with (8) i.e.  

Ƌ𝑘

Ƌ𝑥
= −

𝑘

ℎ

Ƌℎ

Ƌ𝑥
.  Therefore, in this case energy conservation 

equation is connecting changes in 𝐺 with changes in 

water depth ℎ and wave number 𝑘. In this research energy 

conservation equation with higher degree of accuracy was 

used, i.e. 
Ƌ3𝐺

Ƌ𝑥3 = 0. Equation for  
Ƌ3 𝐺

Ƌ𝑥3  was obtained by 

differentiating (14) against horizontal-𝑥  axis and at the 

element 
Ƌ2𝐺

Ƌ𝑥2  substitute with (14), and  
Ƌ2 𝑘

Ƌ𝑥2  is ignored since 

it is very small, a form of energy conservation like (16) 

was obtained, i.e. 
Ƌ𝐺

Ƌ𝑥
= −µ𝑘𝐺  with different coefficient 

of changeµ. 

µ =
2

Ƌ𝑘
Ƌ𝑥

(3
Ƌ𝑘

Ƌ𝑥
+4𝑘2 )

     ........(18) 

With relation (16), hence particle velocity at the direction 

of horizontal-𝑥  axis becomes  

𝑢 = 𝐺𝑘 (𝑠𝑖𝑛𝑘𝑥 + µ𝑐𝑜𝑠𝑘𝑥) 𝛽(𝑧)𝑠𝑖𝑛𝜎𝑡....(19) 

 

III. THE METHOD OF WAVELENGTH 

CALCULATION  

The first equation connecting 𝐺 and 𝑘 is KFSBC: 

𝛾
Ƌ𝜂

Ƌ𝑡
= 𝑤𝜂 − 𝑢𝜂

Ƌ𝜂

Ƌ𝑥
     ....(20) 

𝛾 is weighting coefficient at weighted total acceleration 

equation with a value of 2.784-3.160 (Hutahaean (2019a)) 

and 2.483 for 𝐻1
3⁄  and 2.202 for 𝐻1

10⁄  in Hutahaean 

(2019b). This research used the value of𝛾 = 2.483.  

Substitute (12) and (19) that was done at 𝑧 = 𝜂to (20), 

where the right side is multiplied with 
𝜎

𝜎
,  

Ƌ𝜂

Ƌ𝑡
= −

𝐺𝑘

𝛾𝜎
𝜎 (𝛽1

(𝜂) 𝑐𝑜𝑠𝑘𝑥𝑠𝑖𝑛𝜎𝑡

+ (𝑠𝑖𝑛𝑘𝑥 + µ𝑐𝑜𝑠𝑘𝑥)𝛽(𝜂)𝑠𝑖𝑛𝜎𝑡
Ƌ𝜂

Ƌ𝑥
) 

At the characteristic point, this equation can be written as  

Ƌ𝜂

Ƌ𝑡
= −

𝐺𝑘

𝛾𝜎
(𝛽1

(𝜂) + (1 + µ)𝛽(𝜂)
Ƌ𝜂

Ƌ𝑥
) 𝜎𝑐𝑜𝑠𝑘𝑥𝑠𝑖𝑛𝜎𝑡  

Wave amplitude A is defined as,  

𝐴 =
𝐺𝑘

𝛾𝜎
(𝛽1

(𝜂) + (1 + µ)𝛽(𝜂) Ƌ𝜂

Ƌ𝑥
).....(21) 

Ƌ𝜂

Ƌ𝑡
= −𝐴𝜎𝑐𝑜𝑠𝑘𝑥𝑠𝑖𝑛𝜎𝑡 ....(22) 
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𝜂 = 𝐴𝑐𝑜𝑠𝑘𝑥𝑐𝑜𝑠𝜎𝑡 ....(23) 
Ƌ𝜂

Ƌ𝑥
= −𝑘𝐴𝑠𝑖𝑛𝑘𝑥𝑐𝑜𝑠𝜎𝑡 ....(24) 

By working on the assumption at (22), (23) and (24), 

there is an assumption that water wave surface equation is 

sinusoidal, where wave height 𝐻 = 2 𝐴. From (23), at the 

characteristic point 𝜂 =
𝐴

2
, then (21) becomes 

𝐴 =
𝐺𝑘

𝛾𝜎
(𝛽1 (

𝐴

2
) − (1 + µ)𝛽 (

𝐴

2
)

𝑘𝐴

2
).....(25) 

This equation is the first equation for 𝐺 and 𝑘 calculation 

with wave amplitude 𝐴 as input,  

𝑓1
(𝐺, 𝑘) = −𝐴 +

𝐺𝑘

𝛾𝜎
(𝛽1 (

𝐴

2
) − (1 + µ)𝛽 (

𝐴

2
)

𝑘𝐴

2
) 

...(26) 

As the second equation is surface momentum equation 

where convective velocity is ignored. 

𝛾
Ƌ𝑢𝜂

Ƌ𝑡
= −𝑔

Ƌ𝜂

Ƌ𝑥
 .......(27) 

From (19) 

𝑢𝜂 = 𝐺𝑘 (𝑠𝑖𝑛𝑘𝑥 + µ𝑐𝑜𝑠𝑘𝑥) 𝛽(𝜂) 𝑠𝑖𝑛𝜎𝑡 

𝛾
Ƌ𝑢𝜂

Ƌ𝑡
= 𝐺𝑘𝜎 (𝑠𝑖𝑛𝑘𝑥 + µ𝑐𝑜𝑠𝑘𝑥)𝛽(𝜂)𝑐𝑜𝑠𝜎𝑡 

At the characteristic point the second equation was 

obtained, i.e.   

𝑓2
(𝐺 , 𝑘) = 𝛾𝜎𝐺(1 + µ)𝛽 (

𝐴

2
) − 𝑔𝐴 

               ......(27) 

(27) can be formed into equation for 𝐺and it is substituted 

to (26), so an equation is formed just for wave number 

𝑘. In this research, the two equations are done 

simultaneously, so the values of 𝐺 and 𝑘 are obtained 

which meet KFSBC and momentum equation, with input 

𝜎, ℎ and wave amplitude 𝐴. The calculation was done 

using Newton-Rhapson method, where this iteration 

method needs initial price of iteration. As the initial price, 

for wave number 𝑘 equation from Hutahaean (2019a) was 

used, i.e. 

𝛾2𝜎 2 = 𝑔𝑘 (1 − (
𝑘𝐴

2
))   .........(28) 

This equation is a quadratic equation of wave number 

𝑘that can be completed using simple method to find the 

root of a quadratic equation. After the value of wave 

number was obtained, the initial estimation value of G can 

be calculated using (25) where wave amplitude as input, 

𝐺 =
𝛾𝜎𝐴

𝑘(𝛽1(
𝐴

2
)−(1+µ)𝛽(

𝐴

2
)

𝑘𝐴

2
)
.....(29) 

3.1. The result of wavelength 𝐿calculation 

Wave number 𝑘 can be changed into wavelength with a 

simple relation, i.e. 𝐿 =
2𝜋

𝑘
. The result of wave length 

calculation for various wave periods in a number of water 

depths is shown on Fig.1, where the calculation was done 

at bottom slope
Ƌℎ

Ƌ𝑥
= −0.005, weighting coefficient 𝛾 =

2.483 , and wave amplitude 𝐴 = 0.6. m. 

 
Fig.1: Graph of wave length against water depth 

 

Fig.1 shows that wave with wave period of 8 sec, 

wavelength constant  starts at water depth 9.0 m or deep 

water ℎ0 = 8 m with 𝐿0 = 14.0 m, whereas at wave 

period 9 sec., ℎ0 = 10.0 m with 𝐿0 = 18.4 m, at wave 

period 10 sec. ℎ0 = 12 m, with 𝐿0 = 23.2 m. The wave 

length is quite realistic, quite in line with what exists in 

the nature. 

At the equations for calculating wave number, there are 

wave amplitude as the variables, hence the wave length 

that was produced will be determined by the size of the 

wave amplitude 𝐴. Fig.2 shows graph of wavelength 

against water depth using wave with wave period of 8 

sec., wave amplitude 𝐴, 0.60 m, 0.80 m and 1.0 m. It is 

shown that the bigger the wave amplitude, the shorter the 

wave length. The calculation was done using 
Ƌℎ

Ƌ𝑥
=

−0.005, weighting coefficient 𝛾 = 2.483. 

 

 
Fig.2: The influence of wave amplitude on wave length 

 

With the presence of the influence of wave amplitude on 

wave length, the calculation of wave length change from a 

water depth to a shallower water depth should have been 

calculated along with shoaling analysis.  There is also the 

influence of bottom slope on wave length which will be 

discussed on the next research due to space limitation.  
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Fig.3: The value of wave constant 𝐺 

 

Fig.3 shows the value of wave constant 𝐺 for wave with 

wave period of 8 sec., where the influences of wave 

amplitude and water depth are visible. At the deep water, 

the influence of wave amplitude is not that big where the 

value of G at the three wave amplitude values is almost 

the same. The difference is visible at shallow water, 

where the bigger the wave amplitude, the bigger the value 

of G but at big wave amplitude, i.e. 0.80 m and 1.0 m 

where the difference is very small. Considering that 

basically particle velocity is a function of wave constant 

G, then if wave constant 𝐺 is eliminated with wave 

amplitude, then a very accurate relation between wave 

constant 𝐺 and wave amplitude is needed in order to 

obtain an accurate particle velocity.  

 

IV. SHOALING AND BREAKING MODEL 

In the journey to shallower water, there are 3 (three) wave 

parameters with changing values, i.e. wave number 𝑘, 

wave constant 𝐺  and wave amplitude 𝐴, where in this 

case wave amplitude A has been absorbed as variable of a 

wave.  Therefore, at shoaling and breaking analysis there 

are 3 (three) unknowns, i.e. 
Ƌ𝑘

Ƌ𝑥
, 

Ƌ𝐺

Ƌ𝑥
 dan 

Ƌ𝐴

Ƌ𝑥
  where the 

changes occurred as a result of changes in water depth ℎ. 

There is an unchanged wave characteris tic, i.e.  

𝛽(𝜂0
) = 𝛽 (

𝐴0

2
) = 𝛼0𝑒

𝑘0 (ℎ0+
𝐴0
2

)
+ 𝑒

−𝑘0(ℎ0+
𝐴0
2

)
 

and 

𝛽1
(𝜂0

) = 𝛽1 (
𝐴0

2
) = 𝛼0𝑒

𝑘0(ℎ0+
𝐴0
2

)
− 𝑒

−𝑘0 (ℎ0+
𝐴0
2

)
 

Index 0 shows the value at deep water. The conservation 

of the two characteristics is the consequence of wave 

number conservation law, where 
Ƌ𝛽 (𝜂0

)

Ƌ𝑥
= 0 and 

Ƌ𝛽1
(𝜂0

)

Ƌ𝑥
=

0.  

As a governing equation of changing equation 
Ƌ𝑘

Ƌ𝑥
, 

Ƌ𝐺

Ƌ𝑥
 and 

Ƌ𝐴

Ƌ𝑥
are wave number conservation equation, i.e.  (10) 

(ℎ +
𝐴

2
)

Ƌ𝑘

Ƌ𝑥
+

𝑘

2

Ƌ𝐴

Ƌ𝑥
+ 𝑘

Ƌℎ

Ƌ𝑥
= 0  ......(10) 

The next equation is KFSBC equation in the form of an 

equation for wave amplitude 𝐴 (25),   

𝐴 =
𝐺𝑘

𝛾𝜎
(𝛽1 (

𝐴

2
) − (1 + µ)𝛽 (

𝐴

2
)

𝑘𝐴

2
)    ......(25) 

Defined,  

𝑓 = (𝛽1 (
𝐴0

2
) − (1 + µ)𝛽 (

𝐴0

2
)

𝑘𝐴

2
)  .........(30) 

𝐴 =
𝐺𝑘

𝛾𝜎
𝑓    ......(31) 

Wave amplitude equation (31) was differentiated against 

horizontal-𝑥  axis  

𝛾𝜎
Ƌ𝐴

Ƌ𝑥
= (

Ƌ𝐺

Ƌ𝑥
𝑘 + 𝐺

Ƌ𝑘

Ƌ𝑥
) 𝑓      .......(32) 

Then
Ƌ𝐴

Ƌ𝑥
is substituted to (10) 

(ℎ +
𝐴

2
)

Ƌ𝑘

Ƌ𝑥
+ 𝑘

Ƌℎ

Ƌ𝑥
+

𝑘

2𝛾𝜎
(

Ƌ𝐺

Ƌ𝑥
𝑘 + 𝐺

Ƌ𝑘

Ƌ𝑥
) 𝑓 = 0 

.....(33) 

Hence (33) meet KFSBC.  For (27) to meet energy 

conservation equation, then 
Ƌ𝐺

Ƌ𝑥
 is substituted to (16), 

Ƌ𝐺

Ƌ𝑥
=

−µ𝑘𝐺 , to obtain changing equation of  wave number 
Ƌ𝑘

Ƌ𝑥
  

that meets wave number conservation equations, , KFSBC 

and energy conservation.   

((ℎ +
𝐴

2
) +

𝐺𝑘𝑓

2𝛾𝜎
)

Ƌ𝑘

Ƌ𝑥
= −𝑘

Ƌℎ

Ƌ𝑥
+

µ𝐺 𝑘3 𝑓

2𝛾𝜎
          ......(34) 

At (34), there is variable µ which is a function of 
Ƌ𝑘

Ƌ𝑥
.  

Therefore, the calculation of 
Ƌ𝑘

Ƌ𝑥
with (34) was done using 

iteration, i.e. the first step, 
Ƌ𝑘

Ƌ𝑥
was calculated with (8),

Ƌ𝑘

Ƌ𝑥
=

−
𝑘

ℎ

Ƌℎ

Ƌ𝑥
, the value of µwas calculated with (18).  Then,  

Ƌ𝑘

Ƌ𝑥
was calculated with (34) andµwas recalculated with 

(18). This step is repeated over and over again until a 

stable value of 
Ƌ𝑘

Ƌ𝑥
 where generally 5-6 iterations have 

obtained stable value of 
Ƌ𝑘

Ƌ𝑥
 . After a stable value of 

Ƌ𝑘

Ƌ𝑥
 was 

obtained, 
Ƌ𝐺

Ƌ𝑥
 was calculated with (16) and 

Ƌ𝐴

Ƌ𝑥
  with (10).  

Then, the value of variable at the point 𝑥 = 𝑥 + 𝛿𝑥was 

calculated at the depth ofℎ𝑥+𝛿𝑥 = ℎ𝑥 + 𝛿𝑥
Ƌℎ

Ƌ𝑥
where

Ƌℎ

Ƌ𝑥
is 

negative, using Taylor series. 

𝑘𝑥+𝛿𝑥 = 𝑘𝑥 + 𝛿𝑥
Ƌ𝑘

Ƌ𝑥
 

𝐺𝑥+𝛿𝑥 = 𝐺𝑥 + 𝛿𝑥
Ƌ𝐺

Ƌ𝑥
 

𝐴𝑥+𝛿𝑥 = 𝐴𝑥 + 𝛿𝑥
Ƌ𝐴

Ƌ𝑥
 

The calculation was done from the deep water until 

coastal water, until breaker point and afterward 

4.1. Breaking Characteristics 
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At the equation for the wave amplitude, i.e. (30) and (31), 

there is breaking condition when  𝑓 = 0, 

(𝛽1 (
𝐴0

2
) − (1 + µ)𝛽 (

𝐴0

2
)

𝑘𝐴

2
) = 0....(35) 

𝛽1 (
𝐴0

2
)  and 𝛽 (

𝐴0

2
) are values at deep water, where 

𝛽1 (
𝐴0

2
) = 𝛽 (

𝐴0

2
), so that if (35) is divided by 𝛽 (

𝐴0

2
)the 

result is 

(1 − (1 + µ)
𝑘𝐴

2
) = 0 

𝑘𝑏𝐴𝑏

2
=

1

(1+µ)
  .....................(36) 

In (36), there is the influence of bottom slope on the 

breaking parameter that was absorbed at the value of µ. 

The formulation process has stated that wave is 

sinusoidal, i.e. in (22). (23) and (24), then relation 𝐴𝑏 =
𝐻𝑏

2
 applies, therefore breaker length index is obtained.  

𝐻𝑏

𝐿𝑏
=

2

(1+µ)𝜋
      ................(37) 

In (37), there is the influence of bottom slope on breaker 

height, whereas the previous section has shown that there 

is the influence of bottom slope on wavelength. So, in 

general, bottom slope will have an influence on the 

breaking wave. However, more detail discussion will be 

done in the next research.   

 

4.2. The result of Shoaling-Breaking Model  

As an example, a model was executed for wave with 

wave period 𝑇 = 8 sec., deep water wave height is 𝐻0 =

2.32 m., bottom slope 
Ƌℎ

Ƌ𝑥
= −0.005, weighting 

coefficient 𝛾 = 2.483. As seen in Fig.4, breaking occurs 

at breaker depth ℎ𝑏 = 3.66 m, with breaker height 𝐻𝑏 =

2.95 m. 

 

Fig. 4: Shoaling-breaking, wave period 𝑇 = 8 sec., 𝐻0 =

2.30 m. 

 

The comparison with breaker height index equations is 

presented on Table (1). As comparator, the average values 

of 5 empirical breaker index equations that were obtained 

from laboratories experiments were used, i.e. Komarand 

Gaughan (1972), Larson, M. and Kraus, N.C. (1989), 

Smith and Kraus (1990), Gourlay (1992) andRattana 

Pitikonand Shibayama (2000).  Whereas comparator for 

breaker depth, equation from SPM (1984) was used. 

Table.1: Comparison of the result of the model with 

empirical equation 

𝑇 

(sec) 

𝐻0 

(m) 

𝐻𝑏 (m) ℎ𝑏  (m) 

Model BHI Model SPM 

8 2,32 2,95 2,71 3,66 3,38 

9 2,94 3,73 3,43 4,63 4,28 

10 3,63 4,6 4,23 5,71 5,28 

11 4,39 5,57 5,12 6,91 6,39 

12 5,22 6,63 6,09 8,22 7,61 

13 6,13 7,78 7,15 9,65 8,93 

14 7,11 9,02 8,29 11,19 10,36 

15 8,16 10,36 9,52 12,85 11,89 

16 9,29 11,79 10,83 14,62 13,53 

Note: BHI: average from 5 (five) Breaker Height Index 

equation  

The comparison between the result of the model with 

empirical breaker height equation is shown on Table (1). 

As deep water wave height 𝐻0, 0.9 x 𝐻0−𝑚𝑎𝑥  was used in 

every wave period, where 𝐻0−𝑚𝑎𝑥=
𝑔

𝛾2 𝜎2 m (Hutahaean 

(2019b)), whereas deep water depth ℎ0 =
1.8𝜋

𝑘0
 , bottom 

slope 
Ƌℎ

Ƌ𝑥
= −0.005, weighting coefficient 𝛾 = 2.483.. 

Breaker height 𝐻𝑏 from the model is bigger than breaker 

height from BHI, with an increasing pattern of differences 

with the increase in wave period.Similar differences 

pattern occur at breaker depth ℎ𝑏 , but with not so big 

differences. For more clear information see Fig .5 for 

breaker height comparison and Fig.6. for breaker depth 

comparison. 

 

Fig.5: Comparison of breaker height 
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Fig.6: Comparison of breaker depth 

 

Table.2: Comparison of breaker height index 
𝐻𝑏

ℎ𝑏
 

𝑇 

(sec) 

𝐻𝑏

ℎ𝑏

 
Model 

Model BHI 

𝐿𝑏 

(m) 

𝐻𝑏

𝐿𝑏

 

8 0,81 0,8 4,6 0,64 

9 0,81 0,8 5,82 0,64 

10 0,81 0,8 7,19 0,64 

11 0,81 0,8 8,7 0,64 

12 0,81 0,8 10,35 0,64 

13 0,81 0,8 12,15 0,64 

14 0,81 0,8 14,09 0,64 

15 0,81 0,8 16,17 0,64 

16 0,81 0,8 18,4 0,64 
𝐻𝑏

ℎ𝑏
comparison is shown in Table (2), which shows that the 

result of the model is quite close with the result of 

empirical equation. Breaker steepness cannot be 

compared since there were wave-length differences, 

where breaker length model 𝐿𝑏is quite short, quite in 

accordance with what exist in the nature. Breaker 

steepness  
𝐻𝑏

𝐿𝑏
is quite in accordance with analytical 

equation (37), i.e. 
𝐻𝑏

𝐿𝑏
≈

2

𝜋
 . 

 

V. CONCLUSION 

Wave dynamic calculation using wave constant 𝐺 can be 

done easily and provide a quite good calculation result. 

The wave constant execution enables energy conservation 

equation execution which is a relation between wave 

constant changes with wave number changes.  

The execution of sinusoidal wave assumption, simplify 

the correlation of calculation result in the form of wave 

amplitude with wave height, where generally the 

information needed is wave height. In addition, the 

execution of sinusoidal wave assumption in this research 

found no difficulty in the use of even big wave amplitude. 
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