
International Journal of Advanced Engineering Research and Science (IJAERS) [Vol-6, Issue-4, Apr- 2019]

https://dx.doi.org/10.22161/ijaers.6.4.35 ISSN: 2349-6495(P) | 2456-1908(O)

www.ijaers.com Page | 305

Detecting anti-patterns in SQL Queries using

Text Classification Techniques
Abdou Rahmane Ousmane, Hongwei Xie*

College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan, Shanxi, China (030024)

Abstract— A major problem with using relational

databases, is writing efficient SQL queries. Some common

errors known as anti-patterns are frequent in SQL queries

and can seriously impact the query execution time and

sometimes, the database general performance. This paper

shows how ma-chine learning techniques can be lever-

aged to detect anti-patterns in SQL queries by

approaching the problem as a text classification problem.

Our result is a model based on a convolutional neural net-

work that can be used to classify a SQL query into zero,

one or many anti-patterns classes.

Keywords— SQL, relational database, text classification

techniques.1

I. INTRODUCTION

With the increasing amount of information stored in

relational databases, it is necessary to write SQL queries

that execute faster. Anti-patterns in SQL are common

mistakes that if avoided, can make a query executes faster.

For example, when query-ing an indexed column,

replacing the OR operator with the IN operator, will result

in better perfor-mance, because the IN operator leverages

the in-dex. Thus, using the OR operator in this case, is an

anti-pattern.

SELECT u r l FROM p i c t u r e s WHERE

i d = 10 OR i d = 20

can be rewritten as

SELECT u r l FROM p i c t u r e s WHERE

i d IN (1 0 , 2 0)

By detecting the anti-patterns in a query, we can rewrite

it into a better version. In this paper, we approach the

1 This work is supported by the Dynamic Analysis and

Synchronous Research of Complex Biological Networks

project from the National Natural Science Foundation in

China (No: 61702356, 2018-01-01 - 2020-12-31) and by

the ToF depth camera image real-time depth denoising re-

search project from Shanxi Science and Technology

Depart-ment(No: 201801D121143, 2019-01-01 - 2020-12-

30)

*Corresponding author: xiehongwei@tyut.edu.cn

problem as a multi-class multi-label classification

problem. Our solution is schema-independent, meaning

that the decision made by the neural network doesn’t

depend on the database logical or physical structure. The

dataset used has been built from SQL queries provided by

Sky-Server from Sloan Digital Sky Survey (SDSS).

SkyServer, the portal from the SDSS catalog, provides

data access tools for astronomers and sci-entific education.

Through SkyServer, users can use the SQL language to

query the Sloan Digi-tal Server database. Since 2001, the

portal has seen more than 280 million SQL queries submit-

ted by users and those queries have been opened to the

public through the different data releases. We fetch 1

million queries from SkyServer, that we filter, process and

transform. The final dataset of usage contains 363616

unique SELECT queries.

Following a supervised learning approach, the SQL

queries from SkyServer are used as input data; we

manually label the data by associating each SQL query

with a list of anti-patterns it con-tains.

Our model is based on a convolutional neural network

trained to classify a query into multiple categories. We use

the one-hot encoding technique to encode the queries as

word vectors. For encoding the anti-patterns classes we

use a one dimensional tensor with each class represented

as an in-teger.

We explore some of the important work in the field of

SQL anti-patterns detection in section 2. In section 3, we

explain in details the process fol-lowed to build the

dataset. Then, we discuss our model architecture in section

4. In section 5, we analyze the results from our

experiments. Finally in the conclusion, we compare our

work to the existing solutions and explore the possible

future work.

II. RELATED WORK

Common mistakes in SQL has been already in the interest

of researchers before the appearance of the ISO SQL-92

standard. In 1985, Welty studied how human factors can

affect users in using SQL and found that user performance

could be significantly improved. Later, Brass et al. started

working on the automatic detection of logical errors in

SQL queries and extended their work with the recognition

of common semantic mistakes. They implemented the

https://dx.doi.org/10.22161/ijaers.6.4.35
http://www.ijaers.com/

International Journal of Advanced Engineering Research and Science (IJAERS) [Vol-6, Issue-4, Apr- 2019]

https://dx.doi.org/10.22161/ijaers.6.4.35 ISSN: 2349-6495(P) | 2456-1908(O)

www.ijaers.com Page | 306

SQLLint tool which was able to au-tomatically identify

these errors in (syntactically correct) SQL statements. The

tool seems to be unsupported today. There is another

online tool named SQLLint, but it is a SQL beautifier.

There are also books in this area. The Art of SQL and

Refactoring SQL Applications pro-vide guidelines to write

efficient queries, while the book of Bill Karwin collects

antipatterns that should be avoided.

In a paper, Ahadi et al.,presented a large-scale analysis

of students semantic mistakes in writing SQL SELECT

statements. They collected data from over 2,300 students

across nine years and summarized typical mistakes of the

students. They found that most of the mistakes were made

in queries which require a JOIN, a subquery or a GROUP

BY operator. We argue that queries typ-ically use more

complex syntax in practice com-pared to student projects.

Hence, the situation can be even worse.

In the realm of embedded SQL, Christensen et al.

proposed a technique and a tool (JSA, Java String

Analyzer) to extract string expressions from Java code

statically. As a potential application of their approach, they

check the syntax of dynami-cally generated SQL strings.

They limit their ap-proach to the syntactic validation of the

queries.

Wassermann et al. propose a static string analy-sis

technique to identify possible errors in dynam-ically

generated SQL code. With the implemen-tation of a CFL-

reachability algorithm they detect type errors (e.g.,

concatenating a character to an integer value). Their

approach works with ex-tracted query strings of valid SQL

syntax. In a tool demo paper, they present their prototype

tool called JDBC Checker.

Recently, Anderson and Hills studied query

construction patterns in PHP. They analyzed query strings

embedded in PHP code with the help of the PHP AiR

framework.

Quality assessment of embedded SQL was pro-posed by

Brink et al. in 2007. They analyzed em-bedded query

strings in PL/SQL, Cobol, and Vi-sual Basic programs

while they propose a generic approach which could be

applied to Java too. They investigate relationships which

could be detected through embedded queries (e.g., access,

dupli-cation, control dependencies) and they propose

quantitative query measures for quality assess -ment.

Many static techniques which try to deal with embedded

query strings do it with the purpose of SQL injection

detection. Yeole and Meshram pub-lished a survey of

these techniques. SQL injection detection is different as

the goal is specifically to determine whether a query could

be affected by user input.

Some papers also tackle SQL fault localization

techniques. A dynamic approach was proposed by Clark et

al. to localize SQL faults in database applications. They

provide command-SQL tuples to show the SQL statements

executed at database-interaction points.

A recent work of Delplanque et al. targets the database

to assess the quality of the schema and to detect design

smells in it. They implement a tool called DBCritics which

can analyze PostgreSQL schema dumps and identify

design smells such as missing primary keys or foreign key

references.

A tool which also has to be mentioned here is the

Eclipse plugin called Alvor and JSA [17], this plug-in

analyzes the string expressions in Java code. What is more,

Alvor checks syntax correct-ness, semantics correctness,

and object availability by comparing the extracted queries

against its in-ternal SQL grammar and by checking SQL

state-ments against an actual database.

III. DATASET

3.1 Collecting the queries

We start building our dataset, by fetching 1 mil-lion

successful SQL queries from the SkyServer catalog.

SELECT TOP 1000000 s t a t e m e n t

FROM S q l L o g

WHERE e r r o r = 0

Some of these queries need to be filtered out, in order to

build a more focused dataset.

3.2 Filtering

From the fetched queries, we remove the dupli-cates, so

the dataset contains unique queries only.

a l l Q u e r i e s = l i s t (s e t (v a l u e s))

As we focus on query anti-patterns, we remove all of

the non SELECT queries.

i m p o r t r e

a l l Q u e r i e s = l i s t (

f i l t e r (

l a m b d a i t e m : r e . s e a r c h (

” ˆ s e l e c t ” ,

i t e m . l o w e r ()

) ,

a l l Q u e r i e s

)

)

In the end, the dataset is reduce from 1000000 to 318188

queries.

3.3 Transforming

In order to eliminate irrelevant information and reduce the

size of our dataset vocabulary, we re-place all of the

schema-related terms contained in the queries with

standard words. Thus the queries contain almost only

standard SQL keywords.

https://dx.doi.org/10.22161/ijaers.6.4.35
http://www.ijaers.com/

International Journal of Advanced Engineering Research and Science (IJAERS) [Vol-6, Issue-4, Apr- 2019]

https://dx.doi.org/10.22161/ijaers.6.4.35 ISSN: 2349-6495(P) | 2456-1908(O)

www.ijaers.com Page | 307

SELECT name f r o m s t u d e n t s ;

will be transformed to

SELECT column f r o m t a b l e ;

3.4 Annotating

Following a supervised learning approach, having SQL

queries as input, we need to map each query to a set of

anti-patterns as labels.

Our work is based on 16 common anti-patterns. To each

of the query, we match a single anti-pattern. In fact, a

single query can contain several anti-patterns, but for

simplicity purpose, we only consider the most dominant

anti-pattern. We ex-plain in detail each anti-pattern in the

Appendix section.

Fig.1: Dataset visualization

IV. MODEL

4.1 Data Encoding

4.1.1 Queries

Each SQL query in our current dataset is a list of words.

Word representation methods gener-ally fall into two

categories. The first consists of methods such as one-hot

vectors. This method is problematic due to homonymy and

polysemy words. The other category consists of using un-

supervised learning method to obtain continuous word

vector representations. Recent research re-sults have

demonstrated that continuous word rep-resentations are

more powerful.

In this paper, we use word embedding based on

word2vec (Mikolov et al., 2013). To encode the SQL

queries of our dataset, we choose to use the pre-trained

google word2vec embedding. The model is trained on 100

billion words from Google News by using the Skip-gram

method and maxi-mizing the average log probability of all

the words using a softmax function. Our result model con-

tains 123.852 tokens.

Fig.2: Queries Embedding

0 SELECT *

1 NULL Usage

2 NOT NULL Usage

3 String Concatenation

4 GROUP BY Usage

5 ORDER BY RAND Usage

6 Pattern Matching Usage

7 Spaghetti Query Alert

8 Reduce Number of JOINs

9 Elimina te Unne ce ssar y DISTI N CT

10 Implicit Column Usage

11 HAVING Clause Usage

12 Nested sub queries

13 OR Usage

14 UNION Usage

15 DISTINCT & JOIN Usage

16 No anti-pattern

Fig.3: Anti-patterns list

4.1.2 Anti-patterns

As our work is based on 16 Fixed anti-patterns, we encode

the label data as 1D Vector of integers.

4.2 Convolutionnal Neural Network

The convolution neural network is a state-of-the-art

method to model semantic representations of sentences.

The convolution action has been com-monly used to

synthesize lexical n-gram informa-tion. In our model, we

use three different convo-lutional filters with varying

convolution window size to form parallel CNNs so that

they can learn multiple type of embedding of local regions

so as to complement each other to improve model accu-

racy. The final output is the concatenation of the output of

each.

https://dx.doi.org/10.22161/ijaers.6.4.35
http://www.ijaers.com/

International Journal of Advanced Engineering Research and Science (IJAERS) [Vol-6, Issue-4, Apr- 2019]

https://dx.doi.org/10.22161/ijaers.6.4.35 ISSN: 2349-6495(P) | 2456-1908(O)

www.ijaers.com Page | 308

V. EXPERIMENTS

5.1 Settings

For all our experiments, we use the Stochastic Gradient

Descent optimization algorithm with a learning rate of 0.1

and a weight decay of 0.95. We conduct the experiments

with 50 epochs and we use mini-batches of size 64. We

evaluate the model every 100 steps. We use google pre-

trained word2vec thus the dimension of each word vector

is 300.

We study the sensivity of the proposed model to the

convolutional region size, the number of con-volutional

feature and the dropout rate. We found that we achieve the

best performance when we use the settings values listed in

the Table I.

Our model is developed in Python with Tensor-flow and

Numpy libraries. The experiments are conducted on a

MAC OS PC with 2.9 GHz Intel Core i7 processor and 8

GB RAM.

Region size Feature Maps Drop ou t rate

(4, 5, 6) 150 0.4

Fig.4: Experimental Settings

5.2 Validation method

For validating our model we use the iterated K-Fold

validation model.

The dataset is split into 10 mini-datasets, which are used

to validate each subset repeatedly.

5.3 Results

We compare our results with Sqlcheck . Sqlcheck is a lint

tool that relies on syntax checking logic, to detect anti-

patterns in SQL queries. We run SQL check on each of our

dataset query, and store the results, which we then

compare to our CNN re-sults.

SqlCheck Our model

80 83.2

Fig.5: Experimental Settings

After running the experiments, our model can detect

anti-pattern in a query with an accuracy of 83.2.

VI. CONCLUSION AND FUTURE WORK

In this work, we experimented using text classi-fication

techniques to detect anti-patterns in SQL queries. The

model uses a neural network with a custom dataset built

from SkyServer catalog SQL queries. Experimental results

demonstrate that, our model is quite accurate and can

outperform lint syntax checking software.

For the future, we could focus on rewriting queries

based on the anti-patterns detected.

ACKNOWLEDGEMENTS

I would like to express my gratitude to my super-visor and

corresponding author on this work, Xie Hongwei PhD,

who has been a great mentor dur-ing the years of research.

I would also like to thank my friend Miguel Kakanakou,

for his very helpful advice and ex-perience sharing during

the whole process of this work.

APPENDIX

Anti-patterns explanation select *

When you SELECT *, you’re often retrieving more

columns from the database than your appli-cation really

needs to function. This causes more data to move from the

database server to the client, slowing access and increasing

load on your ma-chines, as well as taking more time to

travel across the network.

Consider a scenario where you want to tune a query to a

high level of performance. If you were to use *, and it

returned more columns than you actually needed, the

server would often have to perform more expensive

methods to retrieve your data than it otherwise might.

When you SELECT *, it’s possible to retrieve two

columns of the same name from two different tables. This

can often crash your data consumer null usage

NULL is not the same as zero. A number ten greater than

an unknown is still an unknown. NULL is not the same as

a string of zero length. Combining any string with NULL

in standard SQL returns NULL. NULL is not the same as

false. Boolean expressions with AND, OR, and NOT also

produce results that some people find confusing not null

usage

When we declare a column as NOT NULL, it should be

because it would make no sense for the row to exist

without a value in that column.

string concatenation

You may need to force a column or expression to be non-

null for the sake of simplifying the query logic, but you

don’t want that value to be stored. Use COALESCE

function to construct the con-catenated expression so that a

null-valued column doesn’t make the whole expression

become null.

group by usage

Every column in the select-list of a query must have a

single value row per row group.

order by rand usage

Sorting by a nondeterministic expression (RAND()) means

the sorting cannot benefit from an index

pattern matching usage

https://dx.doi.org/10.22161/ijaers.6.4.35
http://www.ijaers.com/

International Journal of Advanced Engineering Research and Science (IJAERS) [Vol-6, Issue-4, Apr- 2019]

https://dx.doi.org/10.22161/ijaers.6.4.35 ISSN: 2349-6495(P) | 2456-1908(O)

www.ijaers.com Page | 309

The most important disadvantage of pattern-matching

operators is that they have poor per-formance. A second

problem of simple pattern-matching using LIKE or regular

expressions is that it can find unintended matches.

spaghetti query alert

Split up a complex spaghetti query into several simpler

queries

reduce number of joins

Too many JOINs is a symptom of complex spaghetti

queries

eliminate unnecessary distinct

Too many DISTINCT conditions is a symptom of complex

spaghetti queries.

implicit column usage

Although using wildcards and unnamed columns satisfies

the goal of less typing, this habit creates several hazards.

This can break application refac-toring and can harm

performance

having clause usage

Rewriting the query’s HAVING clause into a pred-icate

will enable the use of indexes during query processing.

nested sub queries

Rewriting nested queries as joins often leads to more

efficient execution and more effective opti-mization

or usage

Consider using an IN predicate when querying an indexed

column

union usage

Unlike UNION which removes duplicates, UNION ALL

allows duplicate tuples.

distinct & join usage

The DISTINCT keyword removes duplicates after sorting

the tuples. Instead, consider using a sub query with the

EXISTS keyword, you can avoid having to return an entire

table.

REFERENCES

[1] Poonyanuch Khumnin and Twittie Senivongse. 2017.

SQL antipatterns detection and database refactoring

process. 2017 18th IEEE/ACIS International Con-

ference on Software Engineering, Artificial Intel-

ligence, Networking and Parallel/Distributed Com-

puting (SNPD)

[2] Csaba Nagy and Anthony Cleve. 2017. A Static Code

Smell Detector for SQL Queries Embedded in Java

Code. PReCISE Research Center, University of Na-

mur, Belgium

[3] Natalia Arzamasova, Martin Schler, and Klemens

Bhm. 2018. Cleaning Antipatterns in an SQL Query

Log. IEEE Transactions on Knowledge and Data

Engineering (Volume: 30 , Issue: 3)

[4] Bill Karwin 2010. SQL Antipatterns

Avoiding the Pitfalls of Database Programming. The

Pragmatic Bookshelf

[5] William J. Brown, Raphael C. Malveau, Hays W.

Mc- Cormick III, and Thomas J. Mowbray. 1998.

An-tipatterns. Wiley and Sons, Inc., New York.

[6] Peter Gulutzan and Trudy Pelzer 2003. SQL

Performance Tuning. Addison-Wesley

[7] Vadim Tropashko 2006. SQL Design Patterns. Ram-

pant Techpress, Kittrell, NC, USA

[8] J. Akbarnejad et al. 2010 SQL QueRIE recommenda-

tions VLDB Endowment, vol. 3, no. 2

[9] F. Silvestri 2010 Mining query logs: Turning search

usage data into knoweledge Found. Trends Inf,

Retr., Vols. 4(1-2)

[10] H. Cao 2006 Context-Aware Query

Suggestion by Mining ClickThrough KDD

[11] V. Singh et al. 2006 SkyServer Traffic ReportThe

First Five Years Microsoft Research

[12] M. Jordan Raddick et al. 2014 Ten Years of

SkyServer Tracking Web and SQL e-Science Usage

Comput-ing in Science and Engineering, vol. 16(4)

[13] QFix: Di- agnosing errors through query histories

 eprint

arXiv:1601.07539

[14] S. Brass et al. 2006 Semantic errors in SQL queries:

A quite complete list Journal of Systems and

Software, vol. 79, no. 5

[15] D. Burleson, V. Tropashko 2007 SQL Design

Patterns: Expert Guide to SQL Programming

Rampant Tech- Press, 2007

https://dx.doi.org/10.22161/ijaers.6.4.35
http://www.ijaers.com/

