
International Journal of Advanced Engineering Research and Science (IJAERS) [Vol-6, Issue-4, Apr- 2019]

https://dx.doi.org/10.22161/ijaers.6.4.43 ISSN: 2349-6495(P) | 2456-1908(O)

www.ijaers.com Page | 1

Two Classic Chess Problems Solved by Answer

Set Programming
Warley Gramacho da Silva1, Tiago da Silva Almeida1, Rafael Lima de

Carvallho1, Edeilson Milhomem da Silva1, Ary Henrique de Oliveira1, Glenda

Michele Botelho1, Glêndara Aparecida de Souza Martins2

1Department of Computer Science, Federal University of Tocantins, BRAZIL

2Laboratory of Kinetics and Modeling Process, Department of Food Engineering, Federal University of Tocantins, BRAZIL

Abstract—The n-Queen and the Knight’s tour problem

are studied by several authors who have proposed some

methods to solve them. The ASP (Answer Set

Programming) is a form of declarative programming

oriented to difficult search problems; however, the

literature does not present its use in solving these two

classic and interesting chess puzzles. Thus, this work aims

to solve the n-Queen and Knight’s Tour problems by ASP

and show it can solve combinatorial problems.

Keywords— Combinatorial problems, Answer Set

Programming, Computation applied.

I. INTRODUCTION

Answer Set Programming (ASP), is a form of declarative

programming oriented to a difficult search problem,

mainly NP-hard [16, 17, 18].

The ASP has application in relevant industrial projects

because to the availability of some efficient ASP systems

[16, 17]. Nevertheless, ASP can be applied to several

areas of science and technology, for example: automated

product configuration, decision support for space shuttle

and automatic route search [17].

The classical problems involving chess are a constant

subject of heuristic and optimization studies [10,12,13].

The n-Queen Problem consists of finding the position of

n-queens on a chessboard n x n. The Knight's Tour

Problem aims to construct a sequence of admissible

moves made by a chess knight from one square to another

so that they land on each square of a board exactly once.

Both problems are interesting classical chess puzzles

solved by many computational and mathematical methods

[9, 11].

In this sense, the objective of this work is to propose the

solution of these two classic challenges of chess through

Answer Set Programming (ASP), proving that ASP is

able to solve combinatorial problems.

II. CHESS PROBLEMS DESCRIPTION

a. The Knight's Tour Problem

The knight’s tour problem consists of a series of moves

(in an L-shape, see Fig. 1) made by a knight visiting

every square of an n x n chessboard exactly once [14, 15,

19]. We can define the problem as knight’s graph for n x

n chessboard to be graph 𝐺 = (𝑉,𝐸) where 𝑉 =

{(𝑖, 𝑗)|1 ≤ 𝑖, 𝑗 ≤ 𝑛}, and 𝐸 = {((𝑖, 𝑗), (𝑘, 𝑙))|{|𝑖 − 𝑘|, |𝑖 −

𝑙|} = {1,2}}. Such that, there is a vertex for every square

of the board and an edge between two vertices exactly

when there is a knight move from one to another. A

knight’s tour is called closed if the last square visited is

also reachable from the first square by a knights move,

i.e., an open knight’s tour is defined to be a Hamiltonian

path; and open otherwise, i.e., closed knight’s tour is

defined to be Hamiltonian cycle on a knight’s graph [19].

Fig. 1: Knight possible moves in an L-shape

The knight's tour problem is used as the basis of studies

for the development of cryptographic schemes [14] and

implementation of random binary numbers [15].

The literature points to some methods that propose the

solution of the knight's tour problem, such as Artificial

Bee Colony [10] and structural algorithms with pre-

defined heuristic rules [20].

b. The n-Queens Problem

The n-Queens problem is to place n queens (a queen can

move as far as she pleases, horizontally, vertically, or

diagonally. See Fig. 2), on an n × n chessboard in such a

way that no queen can attack another, i.e., so that no two

queens are placed in the same row or column or on the

same diagonal. This problem is a generalization of the

https://dx.doi.org/10.22161/ijaers.6.4.43
http://www.ijaers.com/

International Journal of Advanced Engineering Research and Science (IJAERS) [Vol-6, Issue-4, Apr- 2019]

https://dx.doi.org/10.22161/ijaers.6.4.43 ISSN: 2349-6495(P) | 2456-1908(O)

www.ijaers.com Page | 2

original 8-Queen’s problem [7]. Survey of known results

is given in [1].

Fig. 2: Queen piece available moves

Let 𝐾 = {0,1, . . . , 𝑝 − 1}, we can uniquely assign to each

position on the board a par (i,j) of coordinates in the usual

manner, with 𝑖, 𝑗 ∈ 𝐾. Then a solution can be thought of

as a permutation f from K to K satisfying (1) e (2) for all

x, y in K, 𝑥 ≠ 𝑦

(1) 𝑓(𝑥) − 𝑥 ≠ 𝑓(𝑦) − 𝑦

(2) 𝑓(𝑥) + 𝑥 ≠ 𝑓(𝑦) + 𝑦

Such permutation f will be called ordinary solution.

Instead of condition (1) and (2) one might also consider

permutations f satisfying (a) and (b) for all x, y in K, 𝑥 ≠

𝑦

(a) 𝑓(𝑥) − 𝑥 ≠ 𝑓(𝑦) − 𝑦 (𝑚𝑜𝑑𝑝)

(b) 𝑓(𝑥) + 𝑥 ≠ 𝑓(𝑦) + 𝑦 (𝑚𝑜𝑑𝑝)

A permutation f satisfying (a) and (b) is called modular

solution. Any modular solution is also an ordinary

solution.

The n-Queens problem is often studied because there are

several practical applications: VLSI (Very Large Scale

Integration) testing, traffic control, parallel memory

storage schemes, and deadlock prevention [6, 5], memory

storage scheme for conflict free access for parallel

memory systems [2,3,4].

III. IMPLEMENTATION AND EXPERIMENTAL

RESULTS

All the experiments presented in this section have been

performed with CLINGO 4.5.3.

The CLINGO program shown in Listing 1 solves the

open knight’s tours problem. In the Listing 1, on line 1

and 2 we define the chessboard and line 3 defines the

number of step. On line 5 expresses that at step I there

can be one and only one position. Line 6-9 to force the

next steps to execute the knight’s tours rule first, we give

the definition of next, then say that there can be no steps

without the rule being verified and finally we say that you

can not go back to the same cell twice. Line 10-14 next

steps are related to the rule of the horse and return to the

same cell. Line 15 defines the starting position

chessboard where the knight’s will start.

xchessboard(1..m).

ychessboard(1..n).

time(1..m*n).

xypos(X,Y) :- xchessboard(X), ychessboard(Y).

1 { position(I,X,Y) : xypos(X,Y) } 1 :- time(I).

fromTO(XO,YO,XT,YT) :- xypos(XO,YO),

xypos(XT,YT), |XO-XT| = 1, |YO-YT| = 2.

fromTO(XO,YO,XT,YT) :- xypos(XO,YO),

xypos(XT,YT), |XO-XT| = 2, |YO-YT| = 1.

:- time(I), time(I+1), xypos(XO,YO), xypos(XT,YT),

 position(I,XO,YO), position(I+1,XT,YT), not

fromTO(XO,YO,XT,YT).

:- time(IA), time(IB), IA < IB, xypos(X,Y),

position(IA,X,Y), position(IB,X,Y).

:- position(1,X,Y), X+Y>2.

Listing 1: Open knight’s tours program.

The CLINGO program shown in Listing 2 solves the

closed knight’s tours problem. The ideal is the same as

the open knight’s tours program, the difference between

listing 1 and 2 are in line 3 which defines an additional

step of the knight which is the return of the knight initial

position after visiting all the cells and in line 16 forces

that return.

xchessboard(1..n).

ychessboard(1..m).

time(1..n*m+1).

xypos(X,Y) :- xchessboard(X), ychessboard(Y).

fromTO(X1,Y1,X2,Y2) :- xypos(X1,Y1), xypos(X2,Y2),

|X1-X2| = 1, |Y1-Y2| = 2.

fromTO(X1,Y1,X2,Y2) :- xypos(X1,Y1), xypos(X2,Y2),

|X1-X2| = 2, |Y1-Y2| = 1.

1 { position(I,X,Y) : xypos(X,Y) } 1 :- time(I).

:- time(I), time(I+1), xypos(X1,Y1), xypos(X2,Y2),

 position(I,X1,Y1), position(I+1,X2,Y2), not

fromTO(X1,Y1,X2,Y2).

:- time(I1-1), time(I2), I1 < I2, xypos(X,Y),

 position(I1,X,Y), position(I2,X,Y).

:- position(1,X,Y), X+Y>2.

:- position(n*m+1,X,Y), X+Y>2.

Listing 2: Closed knight’s tours program.

Fig. 3-6 show solutions for the open Knight’s Tour

problem on chessboard (5x5), (6x6), (8x8), and (6×5),

respectively.

Fig. 3: Open Knight’s Tour on chessboard (5×5).

https://dx.doi.org/10.22161/ijaers.6.4.43
http://www.ijaers.com/

International Journal of Advanced Engineering Research and Science (IJAERS) [Vol-6, Issue-4, Apr- 2019]

https://dx.doi.org/10.22161/ijaers.6.4.43 ISSN: 2349-6495(P) | 2456-1908(O)

www.ijaers.com Page | 3

Fig. 4: Open Knight’s Tour on chessboard (6×6).

Fig. 5: Open Knight’s Tour on chessboard (8×8).

Fig. 6: Open Knight’s Tour on chessboard (6×5).

Solutions for the closed Knight’s Tour are show in Fig. 7-

9 for chessboard (6x6), (8x8), and (6×5), respectively.

Fig. 7: Closed Knight’s Tour on chessboard (6×6).

Fig. 8: Closed Knight’s Tour on chessboard (8×8).

Fig. 9: Closed Knight’s Tour on chessboard (6×5).

The CLINGO program shown in Listing 3 solves the n-

Queens Problem. In the Listing 3, on line 1 and 2 we

place queens on the chess board exactly one queen per

row/column; on line 3 and 4 allows at most one queen per

diagonal.

1 { queen(I,1..n) } 1 :- I = 1..n.

1 { queen(1..n,J) } 1 :- J = 1..n.

:- 2 { queen(D-J,J) }, D = 2..2*n.

:- 2 { queen(D+J,J) }, D = 1-n..n-1.

Listing 3: n-Queens program.

Fig. 10-13 show solutions for 5x5, 6x6, 7x7, and 8x8 n-

queen’s problems respectively.

Fig. 10: 5×5 Queen’s solution

https://dx.doi.org/10.22161/ijaers.6.4.43
http://www.ijaers.com/

International Journal of Advanced Engineering Research and Science (IJAERS) [Vol-6, Issue-4, Apr- 2019]

https://dx.doi.org/10.22161/ijaers.6.4.43 ISSN: 2349-6495(P) | 2456-1908(O)

www.ijaers.com Page | 4

Fig. 11: 6×6 Queen’s solution

Fig. 12: 7×7 Queen’s solution

Fig. 13: 8×8 Queen’s solution

IV. CONCLUSION

This paper presents the solution to two classic chess

problems (Knight's Tour and n-Queens) through the use

of ASP.

We have seen an ASP algorithm for constructing closed

and open Knight’s Tours on square boards (5x5, 6x6, and

8x8) and not square boards (6x5).

We also present solutions to the problem of n-Queens on

square boards 5x5, 6x6, 7x7, and 8x8, proving that the

ASP algorithm is able to solve combinatorial problems.

ACKNOWLEDGEMENTS

The authors would like to thank the members of the

Applied Computing Team (NCA) and of the Laboratory

of Kinetics and Modeling Process (LaCiMp) for support.

REFERENCES

[1] Jordan Bell and Brett Stevens. A survey of known

results and research areas for n-queens. Discrete

Mathematics, 309(1):1– 31, 2009.

[2] C. Erbas, M. M. Tanik, and V. S. S. Nair. A circulant

matrix based approach to storage schemes for parallel

memory systems. In Proceedings of 1993 5th IEEE

Symposium on Parallel and Distributed Processing,

pages 92–99, 1993.

[3] C. Erbas and M.M. Tanik. n-queens problem and its

algorithms. Technical Report 91-CSE-8,

Department of Computer Science and Engineering,

Southern Methodist University, 1991.

[4] C. Erbas and M.M. Tanik. Storage schemes for

parallel memory systems and then-queens problem.

In Proceedings of the 15th Anniversary of the ASME

ETCE Conference, Computer Applications

Symposium, volume 43, pages 115–120, 1992.

[5] Cengiz Erbas, Murat M. Tanik, and

ZekeriyaAliyazicioglu. Linear congruence equations

for the solutions of the N-queens problem.

Information Processing Letters, 41(6):301–306, 1992

[6] RokSosic and Jun Gu. A polynomial time algorithm

for the n-queens problem. SIGART Bull., 1(3):7–11,

October 1990.

[7] ZsuzsannaSzaniszlo, Maggy Tomova, and Cindy

Wyels. The n-queens problem on a symmetric

toeplitz matrix. Discrete Mathematics, 309(4):969 –

974, 2009.

[8] Rodney W. Topor. Fundamental solutions of the

eight queens problem. BIT Numerical Mathematics,

22(1):42–52, Mar1982

[9] Farhan, A.S.; Tareq, W.Z.; Awad, F.H. Solving N

Queen Problem using Genetic Algotihm.

International Journal of Computer Applications. Vol.

122, N. 12, 2015.

[10] Banharnasakun, A. Artificial Bee Colon Algorithm

for solving the Knight’s. In: International Conference

on Intelligent Computing & Optimization. Pp. 129-

128. 2018.

[11] Buño, K.C.; Cabarle, F.G.C.; Calabia, M.D.; Adorna,

H.N. Solving the N-Queens problem using Dp

systems with active membranes. Theoretical

Computer Science. Vol. 736, p.1-14, 2018.

[12] Torggler, V.; Aumann, P.; Ritsch, H.; Lechner, W. A

Quantum N-Queens Solver. Disponível em

https://arxiv.org/pdf/1803.00735.pdf . Acessoem

17/02/2018.

https://dx.doi.org/10.22161/ijaers.6.4.43
http://www.ijaers.com/
https://arxiv.org/pdf/1803.00735.pdf

International Journal of Advanced Engineering Research and Science (IJAERS) [Vol-6, Issue-4, Apr- 2019]

https://dx.doi.org/10.22161/ijaers.6.4.43 ISSN: 2349-6495(P) | 2456-1908(O)

www.ijaers.com Page | 5

[13] Muhammad, K.; Gao, S.; Qaisar, S.; Abdul, M.M.

Muhammad, A.; Usman, A.; Aleena, A.; Shahid.

Comparative Analysis of Meta-Heuristic Algorithms

for Solving Optimization Problems. In: 8th

International Conference on Management, Education

and Information. 2018.

[14] Singh, M.; Kakkar, A.; Singh, M. Image Encryption

Scheme Based on Knight’s Tour Problem. In: 4th

International Conference on Eco-friendly Computing

and Communication Systems

[15] Mahamood, A.S.; Rahim, M.S.M.; Othman, N.Z.S.

Implementation of the Binary Random Number

Generator Using the Knight Tour Problem. Modern

Applied Science. Vol. 10, n.4, 2016.

[16] BONATTI, P. et al. A 25-year perspective on logic

programming. In: DOVIER, A.; PONTELLI, E.

(Ed.). Berlin, Heidelberg: Springer-Verlag, 2010.

cap. Answer Set Programming, p. 159–182.

[17] LIFSCHITZ, V. Answer set programming and plan

generation. ARTIFICIAL INTELLIGENCE, v. 138,

p. 2002, 2002.

[18] EITER, T.; IANNI, G.; KRENNWALLNER, T.

Answer set programming: A primer. In: TESSARIS,

S. et al. (Ed.). Reasoning Web. [S.l.]: Springer, 2009.

(Lecture Notes in Computer Science, v. 5689), p. 40–

110.

[19] Ian Parberry. An efficient algorithm for the

knightstour problem. Discrete Applied Mathematics,

pages 251–260,1997.

[20] Tan Chi Wee, Nur Hafizah Ghazali and Ghazali Bin

Sulong, A New Structured Knight Tour Algorithm by

Four Knights with Heuristic Preset Rules. Journal of

Telecommunication, Electronic and Computer

Engineering, 171-175, 2018.

https://dx.doi.org/10.22161/ijaers.6.4.43
http://www.ijaers.com/

