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Abstract—The n-Queen and the Knight’s tour problem 

are studied by several authors who have proposed some 

methods to solve them. The ASP (Answer Set 

Programming) is a form of declarative programming 

oriented to difficult search problems; however, the 

literature does not present its use in solving these two 

classic and interesting chess puzzles. Thus, this work aims 

to solve the n-Queen and Knight’s Tour problems by ASP 

and show it can solve combinatorial problems. 
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I. INTRODUCTION 

Answer Set Programming (ASP), is a form of declarative 

programming oriented to a difficult search problem, 

mainly NP-hard [16, 17, 18]. 

The ASP has application in relevant industrial projects 

because to the availability of some efficient ASP systems 

[16, 17]. Nevertheless, ASP can be applied to several 

areas of science and technology, for example: automated 

product configuration, decision support for space shuttle 

and automatic route search [17]. 

The classical problems involving chess are a constant 

subject of heuristic and optimization studies [10,12,13]. 

The n-Queen Problem consists of finding the position of 

n-queens on a chessboard n x n. The Knight's Tour 

Problem aims to construct a sequence of admissible 

moves made by a chess knight from one square to another 

so that they land on each square of a board exactly once.  

Both problems are interesting classical chess puzzles 

solved by many computational and mathematical methods 

[9, 11]. 

In this sense, the objective of this work is to propose the 

solution of these two classic challenges of chess through 

Answer Set Programming (ASP), proving that ASP is 

able to solve combinatorial problems. 

 

II. CHESS  PROBLEMS  DESCRIPTION 

a. The Knight's Tour Problem 

The knight’s tour problem consists of a series of moves 

(in an L-shape, see Fig. 1) made by a knight visiting 

every square of an n x n chessboard exactly once [ 14, 15, 

19]. We can define the problem as knight’s graph for n x 

n chessboard to be graph 𝐺 = (𝑉,𝐸) where 𝑉 =

{(𝑖, 𝑗)|1 ≤ 𝑖, 𝑗 ≤ 𝑛}, and 𝐸 = {((𝑖, 𝑗), (𝑘, 𝑙))|{|𝑖 − 𝑘|, |𝑖 −

𝑙|} = {1,2}}. Such that, there is a vertex for every square 

of the board and an edge between two vertices exactly 

when there is a knight move from one to another. A 

knight’s tour is called closed if the last square visited is 

also reachable from the first square by a knights move, 

i.e., an open knight’s tour is defined to be a Hamiltonian 

path; and open otherwise, i.e., closed knight’s tour is 

defined to be Hamiltonian cycle on a knight’s graph  [19]. 

 

Fig. 1: Knight possible moves in an L-shape 

 

The knight's tour problem is used as the basis of studies 

for the development of cryptographic schemes [14] and 

implementation of random binary numbers [15]. 

The literature points to some methods that propose the 

solution of the knight's tour problem, such as Artificial 

Bee Colony [10] and structural algorithms with pre-

defined heuristic rules [20]. 

b. The n-Queens Problem 

The n-Queens problem is to place n queens (a queen can 

move as far as she pleases, horizontally, vertically, or 

diagonally. See Fig. 2), on an n × n chessboard in such a 

way that no queen can attack another, i.e., so that no two 

queens are placed in the same row or column or on the 

same diagonal. This problem is a generalization of the 
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original 8-Queen’s problem [7]. Survey of known results 

is given in [1]. 

 
Fig. 2: Queen piece available moves 

Let 𝐾 = {0,1, . . . , 𝑝 − 1}, we can uniquely assign to each 

position on the board a par (i,j) of coordinates in the usual 

manner, with 𝑖, 𝑗 ∈ 𝐾. Then a solution can be thought of 

as a permutation f from K to K satisfying (1) e (2) for all 

x, y in K, 𝑥 ≠ 𝑦 

(1) 𝑓(𝑥) − 𝑥 ≠ 𝑓(𝑦) − 𝑦 

(2) 𝑓(𝑥) + 𝑥 ≠ 𝑓(𝑦) + 𝑦 

Such permutation f will be called ordinary solution. 

Instead of condition (1) and (2) one might also consider 

permutations f satisfying (a) and (b) for all x, y in K, 𝑥 ≠

𝑦 

(a) 𝑓(𝑥) − 𝑥 ≠ 𝑓(𝑦) − 𝑦 (𝑚𝑜𝑑𝑝) 

(b) 𝑓(𝑥) + 𝑥 ≠ 𝑓(𝑦) + 𝑦 (𝑚𝑜𝑑𝑝) 

A permutation f satisfying (a) and (b) is called modular 

solution. Any modular solution is also an ordinary 

solution. 

The n-Queens problem is often studied because there are 

several practical applications: VLSI (Very Large Scale 

Integration) testing, traffic control, parallel memory 

storage schemes, and deadlock prevention [6, 5], memory 

storage scheme for conflict free access for parallel 

memory systems [2,3,4]. 

 

III. IMPLEMENTATION AND EXPERIMENTAL 

RESULTS 

All the experiments presented in this section have been 

performed  with CLINGO 4.5.3. 

The CLINGO program shown in Listing 1 solves the 

open knight’s tours problem. In the Listing 1, on line 1 

and 2 we define the chessboard and line 3 defines the 

number of step. On line 5 expresses that at step I there 

can be one and only one position. Line 6-9 to force the 

next steps to execute the knight’s tours rule first, we give 

the definition of next, then say that there can be no steps 

without the rule being verified and finally we say that you 

can not go back to the same cell twice. Line 10-14 next 

steps are related to the rule of the horse and return to the 

same cell. Line 15 defines  the starting position 

chessboard where the knight’s will start. 

 
xchessboard(1..m). 

ychessboard(1..n). 

time(1..m*n). 

xypos(X,Y) :- xchessboard(X), ychessboard(Y). 

1 { position(I,X,Y) : xypos(X,Y) } 1 :- time(I). 

fromTO(XO,YO,XT,YT) :- xypos(XO,YO), 

xypos(XT,YT), |XO-XT| = 1, |YO-YT| = 2. 

fromTO(XO,YO,XT,YT) :- xypos(XO,YO), 

xypos(XT,YT), |XO-XT| = 2, |YO-YT| = 1. 

:- time(I), time(I+1), xypos(XO,YO), xypos(XT,YT), 

   position(I,XO,YO), position(I+1,XT,YT), not 

fromTO(XO,YO,XT,YT). 

:- time(IA), time(IB), IA < IB, xypos(X,Y), 

position(IA,X,Y), position(IB,X,Y). 

:- position(1,X,Y), X+Y>2. 

 
Listing 1: Open knight’s tours program. 

The CLINGO program shown in Listing 2 solves the 

closed knight’s tours problem. The ideal is the same as 

the open knight’s tours program, the difference between 

listing 1 and 2 are in line 3 which defines an additional 

step of the knight which is the return of the knight initial 

position after visiting all the cells and in line 16 forces 

that return.

 

xchessboard(1..n). 

ychessboard(1..m). 

time(1..n*m+1). 

xypos(X,Y) :- xchessboard(X), ychessboard(Y). 

fromTO(X1,Y1,X2,Y2) :- xypos(X1,Y1), xypos(X2,Y2), 

|X1-X2| = 1, |Y1-Y2| = 2. 

fromTO(X1,Y1,X2,Y2) :- xypos(X1,Y1), xypos(X2,Y2), 

|X1-X2| = 2, |Y1-Y2| = 1. 

1 { position(I,X,Y) : xypos(X,Y) } 1 :- time(I). 

:- time(I), time(I+1), xypos(X1,Y1), xypos(X2,Y2), 

   position(I,X1,Y1), position(I+1,X2,Y2), not 

fromTO(X1,Y1,X2,Y2). 

:- time(I1-1), time(I2), I1 < I2, xypos(X,Y), 

   position(I1,X,Y), position(I2,X,Y). 

:- position(1,X,Y), X+Y>2. 

:- position(n*m+1,X,Y), X+Y>2. 

 

Listing 2: Closed knight’s tours program. 

Fig. 3-6 show solutions for the open Knight’s Tour 

problem on chessboard (5x5), (6x6), (8x8), and (6×5), 

respectively. 

 

Fig. 3: Open Knight’s Tour on chessboard (5×5). 
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Fig. 4: Open Knight’s Tour on chessboard (6×6). 

 

 

Fig. 5: Open Knight’s Tour on chessboard (8×8). 

 

 
Fig. 6: Open Knight’s Tour on chessboard (6×5). 

 

Solutions for the closed Knight’s Tour are show in Fig. 7-

9 for chessboard (6x6), (8x8), and (6×5), respectively. 

 

Fig. 7: Closed Knight’s Tour on chessboard (6×6). 

 

Fig. 8: Closed Knight’s Tour on chessboard (8×8). 

 

 

Fig. 9: Closed Knight’s Tour on chessboard (6×5). 

 

The CLINGO program shown in Listing 3 solves the n-

Queens Problem. In the Listing 3, on line 1 and 2 we 

place queens on the chess board exactly one queen per 

row/column; on line 3 and 4 allows at most one queen per 

diagonal. 

 

1 { queen(I,1..n) } 1 :- I = 1..n. 

1 { queen(1..n,J) } 1 :- J = 1..n. 

:- 2 { queen(D-J,J) }, D = 2..2*n. 

:- 2 { queen(D+J,J) }, D = 1-n..n-1. 

 

Listing 3: n-Queens program. 

Fig. 10-13 show solutions for 5x5, 6x6, 7x7, and 8x8 n-

queen’s problems respectively. 

 

Fig. 10: 5×5 Queen’s solution 
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Fig. 11: 6×6 Queen’s solution 

 

 
Fig. 12: 7×7 Queen’s solution 

 

 

Fig. 13: 8×8 Queen’s solution 

 

IV. CONCLUSION 

This paper presents the solution to two classic chess 

problems (Knight's Tour and n-Queens) through the use 

of ASP. 

We have seen an ASP algorithm for constructing closed 

and open Knight’s Tours on square boards (5x5, 6x6, and 

8x8) and not square boards (6x5). 

We also present solutions to the problem of n-Queens on 

square boards 5x5, 6x6, 7x7, and 8x8, proving that the 

ASP algorithm is able to solve combinatorial problems. 
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