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Abstract— The climate models adopted by the 

Intergovernmental Panel on Climate Change are capable 

of reproducing the current climate well on a continental 

scale, but need to be validated on a smaller scale. The 

objective of this study was to evaluate the performance of 

the regional models MarkSim-HadGEM2-ES and 

MarkSim-MIROC5 to estimate average temperatures in 

the last frontier of agricultural expansion of the Brazilian 

savannah. For this purpose, the data generated by the 

models were compared with those recorded by the 

National Institute of Meteorology and evaluated by 

statistical measures of correlation, bias and performance. 

The results revealed low bias and very good agreement, 

but high relative error and unsatisfactory performance in 

micro-regional and regional scales. Thus, the data 

generated by these models need correction to reproduce 

the current climate and enable reliable projections on 

these spatial scales. 

Keywords— evaluation, climate, modelling, savannah, 

temperature. 

 

I. INTRODUCTION 

The processes of climate change are part of the natural 

dynamics of the climate on the planet. However, the 

compilation of scientific studies conducted by the 

Intergovernmental Panel on Climate Change – IPCC 

(2014) attests to a probability above 95% that these 

changes are being accelerated and intensified by the 

increased concentration of greenhouse gases – GHGs 

coming mainly from the burning of fossil fuels and 

changes in land use and coverage to meet the growing 

needs of civilizations (Nkhonjera, 2017; Hsiang; Burke, 

2014; IPCC, 2014; Marengo et al., 2011).  

According to Broecker (2017), GHGs have increased 

their concentrations in the Earth's atmosphere to 

unprecedented levels since the beginning of the 20th 

century and, as a result, global warming has become 

unequivocal, affecting the evapotranspiration and 

precipitation system. In this sense, several researchers 

(O'Neill et al., 2017; Lesnikowski et al., 2015; Hsiang; 

Burke, 2014; IPCC, 2014; Huang et al., 2012; Marengo et 

al, 2012) state that the increase in average annual 

temperatures, at a global level, will increase the monthly 

and interannual variability of rainfall in many locations 

and these events, in turn, may generate various impacts on 

plantations and livestock, such as lack or excess of water, 

outbreaks of pests and diseases, flooding of productive 

lands, forest fires, among others that threaten the health 

and well-being of populations.  

Climate change predictions are the result of scientific 

understanding of the interrelationships between the 

physical, chemical and biological processes that govern 

the functioning of the atmosphere, the oceans and the 

Earth's surface (Steinke, 2012; Riahi et al., 2011). This 

knowledge is used to create global climate models that 

estimate the future behaviour of rainfall, temperature, 

pressure, cloud cover, humidity and a series of other 

climate variables for a day, a month or a year (Riahi et al., 

2011; Thomson et al., 2011). Currently, there are 

numerous climate models that integrate information on 

demographic and socio-economic trends in different 

temporal and spatial scales, but only seventeen of them 

were used in studies selected by phase five of the 

intercomparison of coupled models project – CMIP5 

(Mach et al., 2016; IPCC, 2014). These models are 

considered the most reliable according to a set of criteria 

that include the effectiveness to reproduce the past and 

current climate within a given region, because if a model 

can perform simulations that are very similar to the 

known data, there is greater confidence that this model 

can project the future climate (Lewis. 2014; Moss, 2010). 

Therefore, the Global Climate Models – GCMs adopted 
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by the IPCC (2014) are those that have demonstrated 

convincing ability to reproduce observed characteristics 

of the current climate and its changes in the past. 

The GCMs provide reliable quantitative estimates of 

future climate change, particularly at continental scales in 

the order of 300 x 300 km (IPCC, 2014). However, the 

use of GCMs is limited in projecting climate change at 

the regional and sub-regional levels because significant 

differences in climate occur at a scale below the 

resolution of the GCMs. So, to expand the spatial 

resolution of the set of climate data produced by a GCM it 

is necessary to convert and validate them through 

downscaling methods (Silva, 2018; Lyra et al., 2017; 

Chou et al., 2012).  

Feng et al. (2015) analysed ten models of the CMIP5 and 

demonstrated that none of them alone can capture long-

term trends. This is due to a failure to simulate the 

difference between the interhemispheric sea surface 

temperature. Therefore, it is important to analyse the 

interannual variability of the simulations of the annual 

averages of the interesting variables in order to validate 

them through downscaling methods. 

The need to validate the data generated in the 

downscaling process of a given GCM, through 

comparison with the data observed in different parts of 

the globe, makes it essential to select a period 

representative of local time to calculate a Climate Normal 

of interest (IPCC, 2013). A Climatic Normal (NC) is 

defined by the World Meteorological Organization 

(WMO, 2011) as the average of the atmospheric variables 

recorded in 30-year periods, starting on the first day of 

January of the years ending with digit one. For example, 

the average rainfall of a region in the period from January 

1st, 1981 to December 31st, 2010 is an NC. However, the 

scarcity of meteorological records with such long 

historical series is a common problem in numerous 

regions of the planet. Therefore, the WMO (2011) 

recommends the adoption of the Provisional 

Climatological Normals (NCP) that should be calculated 

from periods of ten years of observations recorded data 

following the other criteria of the NC. 

Among the models evaluated in CMIP5, MIROC5 (Model 

for Interdisciplinary Research on Climate 5) and 

HadGEM2-ES (Hadley Centre Global Environmental 

Model 2 – Earth System) are the ones that obtained the 

best results in simulating the present and past climate of 

South America (Lyra et al., 2017; Chou et al., 2012; Jones 

et al., 2011; Watanabe et al., 2011). 

In the Brazilian savannah, the water cycle and 

temperatures are strongly influenced by vegetation 

characteristics (Strassburg et al., 2017), so it is highly 

vulnerable to global climate change. Therefore, the rapid 

expansion of natural areas converted into pastures and 

plantations can accelerate local climate change processes 

(Ayala et al., 2016; Imaflora, 2018). 

The strategic importance of this biome for the 

preservation of the country's water resources is 

undeniable, since it absorbs and flows into it the waters 

that supply three important aquifers and six large 

Brazilian hydrographic basins, including the Amazon and 

the Tocantins. Additionally, this biome hosts large 

ecologically sensitive areas due to the great biodiversity 

of fauna and flora, with hundreds of endemic species and 

a mosaic of soils vulnerable to erosion and acidification 

processes (Strassburg et al., 2017; PBMC, 2014; Da 

Silva, 2013). 

In this context, the objective of this study was to evaluate 

the performance of the simulations generated in the 

regional climate models MarkSim-HadGEM2-ES and 

MarkSim-MIROC5, based on data observed in 

conventional INMET weather stations located in the 

micro-regions that make up the last frontier of agricultural 

expansion of the Brazilian savannah. 

 

II. MATERIAL AND METHODS 

The territorial delimitation followed the proposal of 

Miranda et al. (2014) and was composed of 31 micro-

regions of four federal units (UF) in Brazil, which 

encompass 139 municipalities in Tocantins, 135 in 

Maranhão, 33 in Piauí and 30 in Bahia distributed in an 

area of 73,848,967 hectares (Figure 1).  

 

Fig. 1: Location of the study area. 

This territory is composed predominantly of savannah 

formations (63.6%), but also presents transition areas 

between different types of flowers (15%) and seasonal 

forest (10.7%) on the borders with the Amazon biome and 

Caatinga to the west and east, respectively. The relief is 

characterized by large areas of slopes (39%) and 

depressions (56%), with altitudes ranging from 1 to 
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1200m above sea level. In the central extension, the semi-

humid tropical climate is dominant and corresponds to 

about 78% of the territory, being characterized by periods 

of seven to eight months of scarce precipitation and 

average air temperature above 18°C in all the months of 

the year. On the eastern border, the semi-arid climate is 

characterised by the absence of rainfall for six months and 

high temperatures all year round. Four large hydrographic 

regions are contained within these limits, they are: 

Tocantins-Araguaia, Atlantic-North/Northeast stretch, 

Parnaíba and São Francisco (Magalhães et al., 2014; 

Mingonti et al., 2014). 

The monthly averages of maximum, minimum and 

average temperatures were extracted from the records of 

the stations of the National Institute of Meteorology – 

INMET, available on the institution's website 

(http://www.inmet.gov.br/portal/). 

 

Fig. 2: Location of the 27 weather stations. 

Historical records of observations made in 27 

meteorological stations in the last ten years were used, 

referring to the period from January 2010 to December 

2018. These records were associated with each micro-

region (Table 1) which, according to information from the 

Municipal Agricultural Survey of the Brazilian Institute 

of Geography and Statistics (IBGE, 2018), has 

experienced an agricultural area growth of over 40% 

since 2009. 

The daily climate data simulation was generated in the 

MarkSim-GCM. The MarkSim is a 3rd order Markov 

generator designed to estimate precipitation and daily 

temperatures that, according to Jones and Thornton 

(2013), has been used efficiently as a temporal and spatial 

downscaling, with resolutions up to 50 km 

(http://gisweb.ciat.cgiar.org/MarkSimGCM/). Therefore, 

temporal and spatial downscaling was used on the 

coordinates of the INMET stations from the HadGEM2-

ES (Hadley Centre Global Environmental Model 2 – 

Earth System) models with resolution data of 

1,2414°x1,875° (Jones et al., 2011) and MIROC5 (Model 

for Interdisciplinary Research on Climate 5) produced by 

the Climate System Research Center of the University of 

Tokyo, with resolution data of 1,4063°×1,4063° 

(Watanabe et al., 2010). Thus, data on precipitation, solar 

radiation and maximum and minimum temperatures were 

generated for the period from January 2010 to December 

2018. 

Table 1: Identification codes (ID) of the Micro-regions 

contained in the study area and their states. 

Micro-region ID Micro-region ID 

Alto Mearim e Grajaú 

– MA¹ 
01 Cotegipe - BA 17 

Alto Médio Gurguéia – 

PI² 
02 Dianópolis - TO 18 

Alto Parnaíba 

Piauiense - PI 
03 Gerais de Balsas - MA 19 

Araguaína – TO³ 04 Gurupi - TO 20 

Baixo Parnaíba 

Maranhense - MA 
05 Imperatriz - MA 21 

Barreiras – BA4 06 Itapecuru Mirim - MA 22 

Bertolínia – PI 07 Jalapão - TO 23 

Bico do Papagaio – TO 08 
Lençóis Maranhenses - 

MA 
24 

Bom Jesus da Lapa – 

BA 
09 Médio Mearim - MA 25 

Caxias – MA 10 
Miracema do 

Tocantins - TO 
26 

Chapadas das 

Mangabeiras - MA 
11 Porto Franco - MA 27 

Chapadas do Alto 

Itapecuru - MA 
12 Porto Nacional - TO 28 

Chapadas do Extremo 

Sul - PI 
13 Presidente Dutra - MA 29 

Chapadinha – MA 14 Rio Formoso - TO 30 

Codó – MA 15 
Sta Maria da Vitória - 

BA 
31 

Coelho Neto – MA 16   

States: Bahia4, Maranhão1, Piaui2 e Tocantins3 
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Descriptive statistics tools (mean, coefficient of variation, 

Student's t test and Pearson's correlation coefficient) were 

used in the Paleontological Statistics Software Package 

for Education and Data Analysis – PAST and used to 

analyse the results, adopting a significance level of 95% 

to test the possible interannual differences and 

relationships between the variables obtained and 

simulated. 

To assess the accuracy of climate models, the percentage 

of bias (Pbias), mean absolute percentage error (EMPA) 

and mean absolute error (EMA) was used together with 

Willmott's agreement index (Willmott et al., 2012). On 

the other hand, the adapted performance index (C') of the 

models was evaluated by the product of Pearson's 

correlation coefficient (r) and Willmott's index (d), as 

proposed by Camargo and Sentelhas (1997). 

The zero value for Pbias (Equation 1) indicates the 

absence of bias, while different values indicate 

overestimation, when negative, and underestimation, 

when positive (Van Liew et al., 2007). Considering that 

the observed data present a small margin of error, Pbias 

between -0.5% and +0.5% were considered null. 

 

Equation 1: 

 
Where:  

Est
i
 – Estimated value of the variable for point i;  

Obs
i
 – Observed value of the variable for point i. 

 

The EMA measures the magnitude of the weighted 

average of absolute errors. For Willmott and Matsuura 

(2005), the EMA is a natural and more accurate measure 

of the mean magnitude of the error as can be seen in 

equation 2. 

 

Equation 2: 

 
Where:  

Ei – Estimated value of the variable for point i;  

Oi – Observed value of the variable for the point i;  

n – Sample size. 

 

The mean absolute percentage error – EMPA (Equation 

3) is a precision statistic that prevents the error from 

being decreased by the sum of values with opposite signs 

and can be classified according to Table 2 (Lewis, 1997). 

 

Equation 3: 

 
Where:  

Est
i
 – Estimated value of the variable for point i;  

Obs
i
 – Observed value of the variable for point i; 

n – Sample size. 

 

Willmott's index reveals the degree of agreement between 

observed and simulated measurements, ranging from 0 to 

1, where the first value represents the total disagreement 

and the second the perfect agreement. Thus, the higher the 

result of equation 4, the better the performance of the 

model. 

 

Equation 4: 

 
Where: 

Ei – Estimated value of the variable for point i; 

Oi – Observed value of the variable for the point i; 

Ō – Average value of the observed variable 

n – Sample size. 

 

Table.2: Proposed classification for Pbias and 

performance index (C'). 

Pbias¹ (C’)² EMPA³ Classification 

<10% > 0,75 < 10% Very Good 

10% - 14%  0,75 -0,64 10% - 19% Good 

15% - 24% 0,65 - 0,60 20% - 29% Satisfactory 

≥25%  < 0,60 ≥30% Unsatisfactory 

¹Van Liew et al. (2007); ²Camargo e Sentelhas (1997); 

³Lewis (1997) 

 

The adjustment of the models was performed by test ing 

multiple regression models, and sinusoidal regression was 

selected because it better represents the cyclic regime of 

the temperature oscillations in the region. 

 

III. RESULTS  AND DISCUSSION 

Figure 3 shows the behaviour of the quarterly averages of 

observed temperatures simulated by the HadGEM2-ES 

and MIROC5 climate models. The typical seasonality of 

the region (Lahsen et al., 2016; Curado et al., 2014) is 

satisfactorily reproduced in the model, but with a marked 

tendency to overestimate temperatures in the fourth 

quarter (October, November and December) and 
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underestimate them in the second quarter (April, May and 

June). The same pattern of error was found, with small 

differences, in both models, and the largest errors 

recorded occurred in the second and third trimester, where 

the observed temperatures were much higher than those 

simulated. These quarters correspond to the post-harvest 

period in monoculture plantations, where the soil of large 

areas is uncovered and there is a sharp drop in air 

humidity due to low vegetation cover and, consequently, 

reduced evapotranspiration (Balduíno et al., 2018; 

Imaflora, 2018; Ayala et al., 2016; Curado et al., 2014; 

Da Silva, 2013). 

 

Fig. 3: Quarterly averages of Simulated and Observed Temperatures in the period from 20 10 to 2018. 

 

Table 3 presents the descriptive statistics of the simulated 

and observed data, on a monthly basis, in the studied area. 

It is possible to see that the models simulate measures of 

central tendency and interannual variability very similar 

to those observed, so that no significant difference 

between the variables was detected, at the minimum level 

of p≤0,05 in the Student's t test, in this time scale. There 

is also a low intra and interannual variability of mean 

temperature in this region, which according to Strassburg 

et al. (2017) represents an indication of greater 

vulnerability to environmental changes, since the 

functioning of almost all ecological services is adapted to 

low temperature ranges. 

Table 3: Descriptive statistics of the studied period. 

Statistical indicators MIROC5 HadGEM2  Observed 

Mean (Cº) 27,267 27,231 27,277 

Standard Deviation 1,012 1,104 0,950 

Variation Coefficient 

(%) 3,710 4,056 3,481 

 

Figure 4 shows the bias, or the absence of it, in the 

simulation of the two models in relation to the average 

monthly temperatures observed in each micro-region that 

presented expansion of agricultural areas in the last 10 

years. This special view shows that the models provided 

overestimated data for most micro-regions. 

The MIROC5 model had better results in this indicator, 

since it did not present bias in eight micro-regions (Fig 

4B), while the HadGEM2-ES model did not have bias in 

only five micro-regions (Fig 4A). Five micro-regions had 

their temperatures underestimated in both models, being 

two central ones where savannahs predominate and three 

in the eastern border, in the transition from the Cerrado to 

the Semiarid. It is noticed that the absence of bias is 

concentrated in the micro-regions near the Amazon biome 

(IBGE, 2012), where there is also a higher frequency of 

classification divergence between the two models. 

 

Fig. 4: Bias of over or underestimation of monthly mean 

temperatures in the simulations of the HadGEM2-ES (A) 

and MIROC5 (B) climate models in the period from 2010 

to 2018. 

 

Table 4 shows that the percentage of bias was classified 

as "very good" for both models and in all micro-regions 

analysed. However, it was found that in 11 micro-regions 

the HadGEM2-ES error is higher, while in other 10, the 

MIROC5 shows a higher error. For the others, the 

difference in errors between the two models is irrelevant. 

The same occurred with the Willmott index, with the 
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smallest values located in micro-regions 02, 04, 17 and 

18. 

Average errors above 1.5ºC, in at least one of the models, 

were found in 33.3% of the micro-regions. It is 

noteworthy that, given the low variability (VC < 4.1%) of 

the interannual mean temperatures observed in the study 

area (Table 2) and in others (Batlle-Bayer et al., 2010; 

INPE, 2013), errors of this magnitude can be considered 

substantial, even though the agreement of the variables' 

behaviour is high (d>0.80). It was also observed that the 

MIROC5 model obtained greater errors than the 

HadGEM2-ES in most (57%) of the micro-regions. 

Table 5 shows that the values obtained for each model in 

the statistical indicators, at a regional scale (study area 

unit), are similar in relation to precision (d), correlation 

(r) and the percentage of mean error (EMPA), these being 

classified as from moderate to very good. However, there 

are significant differences in relation to the bias (Pbias) 

and the performance indicator (C). Although the results of 

both models are classified as very good for the bias (Van 

Liew et al., 2007), they show unsatisfactory performance 

(Camargo and Sentelhas, 1997). In this sense, the 

MIROC5 model underestimates, while the HadGEM2 

model overestimates the average temperatures. Both are 

considered very good, but the MIROC5 model is the one 

with the lowest bias. Part of these results are similar to 

those found by Sales et al. (2015). However, Torres 

(2014) also found many uncertainties in the validation of 

climate models, even with dynamic downscaling 

techniques. 

 

Table 4: Model performance indicators in each micro-

region of agricultural expansion. 

ID (d) 

Had     Miroc 

EMA 

Had    Miroc 

Pbias 

Had      Miroc 

1 0,94 0,92 1,22 1,35 -0,74 0,73 

2 0,50 0,48 1,94 2,16 -3,54 -4,19 

3 0,93 0,90 0,88 1,21 -1,41 -3,06 

4 0,62 0,63 1,67 1,36 -5,64 -4,14 

5 0,94 0,92 0,87 1,14 -1,25 0,00 

6 0,83 0,89 0,71 0,95 -0,87 -2,17 

7 0,94 0,92 1,29 1,39 -1,74 -0,56 

8 0,93 0,94 1,15 1,04 0,25 0,20 

9 0,83 0,88 1,43 1,12 1,15 0,54 

10 0,96 0,94 1,13 1,27 -0,97 0,50 

11 0,93 0,90 0,88 1,21 -1,41 -3,06 

12 0,93 0,92 1,10 1,15 -2,26 -1,83 

13 0,82 0,85 1,51 1,44 3,01 2,98 

14 0,94 0,92 1,07 1,14 -1,25 0,00 

16 0,94 0,92 0,97 1,14 -1,25 0,00 

17 0,70 0,78 1,64 1,38 2,75 1,65 

18 0,61 0,63 2,07 2,28 -3,64 -5,49 

19 0,93 0,90 1,29 1,45 1,17 1,66 

20 0,87 0,84 1,36 1,72 -4,02 -5,81 

21 0,93 0,94 1,15 1,04 0,25 0,20 

23 0,81 0,86 2,13 1,87 4,45 3,55 

26 0,90 0,90 1,12 1,24 -3,17 -3,08 

27 0,92 0,92 1,33 1,22 -1,40 -0,58 

28 0,87 0,90 1,61 1,47 -0,01 -0,67 

29 0,97 0,97 0,90 0,93 0,16 0,40 

30 0,83 0,83 1,62 1,64 -0,01 -0,14 

31 0,82 0,79 0,25 1,32 -1,34 -2,88 

 

Table 5: Model performance indicators in relation to the 

total delimited area for the study. 

Indicators  MIROC5 HadGEM2  Performance 

(d)¹ 0,744 0,729 Very High 

EMPA 3,054 3,079 Very Good 

(r)² 0,526 0,561 Moderate 

Pbias* 0,107 -0,854 Very Good 

(C’)* 0,392 0,409 Unsatisfactory 

¹Stork et al. (2016); ²Levine et al. (2008); *significative 

(p≤0,05) 

The analysis of the behaviour of the time series (Figure 

2), composed by the observed data and estimated by 

downscaling of the models, revealed that the forecast 

errors present a cyclic pattern. Therefore, the adjustment 

of the models was performed by sinusoidal regression of 

four phases, that is, considering the averages of quarterly 

periods. The models were adjusted by Equation 5 and the 

coefficients generated for each model are expressed in 

Table 6. 

Equation 5: 

 
Where: 

Y – Adjusted estimated value;  

X – Gross value estimated by the model.;  

X
max

 – Estimated maximum gross value; 

X
min

 – Estimated minimum gross value; 

T – Estimation period; 

p – Number of phase of the sinusoidal model. 
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Table 6: Sinusoidal adjustment coefficients. 

Phase 

MIROC5 HadGEM2 

Range Period Range Period 

1 -0,697 3,590 -0,7572 3,673 

2 -0,282 0,572 -0,3334 0,567 

3 -0,447 0,152 0,3469 0,092 

4 0,247 0,143 -0,3547 0,166 

 

The adjustment results can be seen in Figure 5 and Table 

7. It was confirmed that the adjustment generated an 

increase in agreement between the simulations and the 

observed data, which intensified the model's performance 

level and provided better temporal adjustments in the 

seasonal oscillations. 

 
Fig. 5: Quarterly averages of Simulated and Observed Temperatures, with sinusoidal adjustment, throughout the studied 

period. 

Table 7: Model performance indicators after sinusoidal 

adjustment. 

Indicators  MIROC5 HadGEM2  Performance 

(d)¹ 0,999 0,999 Very High 

EMPA 1,976 1,997 Very Good 

(r)² 0,50 0,52 Moderate 

Pbias 0,002 -0,001 Very Good 

(C’) 0,707 0,721 Good 

¹Stork et al. (2016); ²Levine et al. (2008). 

 

IV. CONCLUSION 

1 – Both models are accurate in reproducing the average 

annual and interannual temperatures, as well as their 

variability. However, they present difficulties in 

temporally synchronizing the typical monthly seasonality 

of the studied region, even though they reproduce them 

satisfactorily on an intra-annual scale; 

2 – Both models present high levels of agreement in 

relation to the temperatures observed in the micro-

regional scale, except in the micro-regions 02, 04, 17 and 

18, where the level of agreement is classified as 

moderate; 

3 – The bias of both models is less than 1% on a regional 

scale and varies from 0 to 5.64% on a micro-regional 

scale, being classified as "Very Good" in the two scales 

analysed. However, the models present biases in opposite 

directions in several micro-regions, and in the regional 

scale the MIROC5 tends to underestimate while the 

HadGEM2 tends to overestimate the interannual and 

micro-regional mean temperatures; 

4 – The opposing biases in many micro-regions and in the 

studied region determined only a moderate correlation 

between the data simulated by both models in relation to 

the observed data. This affected the coefficient of 

performance of the models, which was classified as 

unsatisfactory in all spatial scales analysed; 

5 – This is reinforced by the values presented in the mean 

absolute error, since, even with a reduced variability of 

intra- and interannual temperatures in all micro-regions, 

the error was higher than 1.5º C in several of them. 

Although the percentage of regional mean error was 

approximately 3%, the low variability of mean 

temperatures in the region makes this percentage high for 

the local reality, although class ified in the literature as 

"very good"; 

6 – Despite the great balance in the performance of the 

two models, the MIROC5 was slightly higher on a 

regional scale. On the micro-regional scale, the 

superiority of one over the other is a result of the lowest 

bias and is divided similarly among micro-regions; 

7 – Temperature simulation is important to estimate the 

other climate variables and make projections for the 

future (Balduíno et al., 2018; Bocchiola et al., 2013). 

Therefore, the results of this study show that the data 

generated in the regional climate models MarkSim-

HadGEM2-ES and MarkSim-MIROC5 require correction 

of systematic errors prior to the use of future projections 

aimed at multiple objectives, especially in the planning of 

public policies that require greater intra-annual precision. 

However, for studies requiring only annual averages, it is 

sufficient to choose the model with the least bias in 
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micro-regional scales. 

8 - The method of adjustment of the simulations, by 

means of sinusoidal regression, substantially increased 

the performance index of the estimates by improving the 

level of agreement between the simulated and observed 

data. 
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